cho tam giác abc cân tại a,góc a nhọn.đường cao bd cà ce cat nhau tại h, ve diểm m là tđ của bc.cm
a)bd=ce
b)ed//bc
c)giao diem a,h,m thang hang
d)ed<bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(H\)là giao hai đường cao \(BD,CE\)của tam giác \(ABC\)nên \(H\)là trực tâm của tam giác \(ABC\).
Suy ra \(AH\perp BC\)(1)
Tam giác \(ABC\)cân tại \(A\)nên trung tuyến \(AM\)cũng đồng thời là đường cao của tam giác \(ABC\).
Suy ra \(AM\perp BC\)(2)
Từ (1) (2) suy ra \(A,H,M\)thẳng hàng.
Xét tam giác \(EBD\)có \(\widehat{BED}\)là góc tù nên \(ED< BD\).
Xét tam giác \(BDC\)vuông tại \(D\):
\(BC>BD\)
suy ra \(BC>ED\).
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: ΔABD=ΔACE
=>góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
toan lop 7 nha