K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho tam giác ABC cân tại A , góc A nhọn. Đường cao BD và CE cắt nhau tại H, vẽ điểm M là trung điểm của BC. Cm:                                                                                a)BD = CE.                                                                                                                                b)ED // BC.                                                                                                                              c)Giao...
Đọc tiếp

Cho tam giác ABC cân tại A , góc A nhọn. Đường cao BD và CE cắt nhau tại H, vẽ điểm M là trung điểm của BC. Cm:                                                                                a)BD = CE.                                                                                                                                b)ED // BC.                                                                                                                              c)Giao điểm A, H, M thẳng hàng.                                                                                              d)ED < BC.

1
16 tháng 7 2021

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:

AB = AC (ΔABC cân tại A)

∠BAD chung

⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn)

⇒ BD = CE (hai cạnh tương ứng)

Vậy BD = CE

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔMAD và ΔMBH có

góc MAD=góc MBH

MA=MB

góc AMD=góc BMH

=>ΔMAD=ΔMBH

=>AD=BH

mà AD//BH

nên ADBH là hình bình hành

=>BD=AH

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đó: ΔABD=ΔACE
Suy ra: AD=AE

b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)

d: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)

nên ΔHBC cân tại H

=>HB=HC

hay H nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(2)

Từ (1) và (2) suy ra A,H,M thẳng hàng

16 tháng 11 2023

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: ΔABD=ΔACE

=>AD=AE

Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

Do đó: ΔAEI=ΔADI

=>EI=DI

c: ΔABD=ΔACE

=>BD=CE

BI+DI=BD

CI+EI=CE
mà EI=DI và BD=CE

nên BI=CI

IB=IC

AB=AC

Do đó: AI là đường trung trực của BC

=>AI\(\perp\)BC

7 tháng 6 2021

A) Trong TG cân, đường vuông góc xuất phát từ đỉnh cân đồng thời là đường trung tuyến, trung trực, phân giác

b) TG AMC = TG CME (g.c.g : AM= MC trung điểm; Góc AMB= góc CME đối đỉnh ; góc MCE = góc BAM so le trong)

c) I nằm trên trung điểm BC và trung điểm AC

D) 

Ta có: BM=ME ( TG AMC= TG CME)

=> BE = 2 BM 

 mà BI =2/3 BM ( I là trọng tâm)

=> BI= 1/3 BE

=> 3 BI = BE 

Xét TG AEB, ta có :

BE < AB+ AE ( Bất đẳng thức trong TG)

mà BE= 3 BI( cmt)

=> 3 BI< AB + AE

a: Xét ΔCBD có

CA vừa là trung tuyến, vừa là đường cao

=>ΔCDB cân tại C

b: Xét ΔMDE và ΔMCB có

góc DME=góc CMB

MD=MC

góc MDE=góc MCB

=>ΔMDE=ΔMCB

=>ME=MB và CB=DE

BC+BD=ED+BD>BE

11 tháng 4 2016

Diện tích toàn phần của khối nhựa hình lập phương là:

10 x 10 x 6 = 600 (cm2)

Cạnh khối gỗ hình lập phương là:

10 : 2 = 5 (cm)

Diện tích toàn phần của khối gỗ hình lập phương là:

5 x 5 x 6 = 150 (cm2)

Diện tích toàn phần của khối nhựa gấp diện tích toàn phần của khối gấp số lần là:

600 : 150 = 4 (lần)

11 tháng 4 2016

a) AB=4 cm;BD=8cm. góc A > góc C > góc B

b)tam giác ACB = tam giác ACD(c-g-c)

=>CB=CD hoặc góc B + góc D

=> tam giác CBD cân tại C