K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

x+y = 47  ( đầu bài bạn)

!~ HỌC TỐT ~!

15 tháng 7 2021

à khi sao chép nó bị thiếu í bạn là ( x+y ) mũ ba nha

AH
Akai Haruma
Giáo viên
23 tháng 9 2023

Lời giải:

$\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{2}{x+y}$

$=x+y+\frac{2}{x+y}$

$=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}$

$\geq \frac{x+y}{2}+2\sqrt{\frac{x+y}{2}.\frac{2}{x+y}}$ (áp dụng BDT Cô-si)

$\geq \frac{2\sqrt{xy}}{2}+2=\frac{2}{2}+2=3$

Vậy ta có đpcm

Dấu "=" xảy ra khi $x=y=1$

27 tháng 4 2018

bạn chỉ cấn thay x=0,y=-1 váo biểu thức rồi tính như bình thường là dc

2 tháng 1 2017

Chép lại cái đề đi bạn. Cái đề vầy mình đọc không ra. 

2 tháng 1 2017

\(\frac{\frac{x^2+xy+y^2}{x^3+y^3}}{\frac{x^3-y^3}{x^2-xy+y^2}}=\frac{x^2+xy+y^2}{x^3+y^3}.\frac{x^2-xy+y^2}{x^3-y^3}=\frac{x^2+xy+y^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}.\frac{x^2-xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{1}{\left(x+y\right)\left(x-y\right)}=\frac{1}{x^2-y^2}\)

27 tháng 6 2018

1)  1/x-1/y

=y/xy-x/xy

=y-x/xy

= - (x-y)/xy

= -1 (vì x-y=xy)

2)

(x- 1/2)*(y+1/3)*(z-2)=0

=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0

th1 :x-1/2=0 => x=1/2

x+2=y+3=z+4

mà x=1/2 => y= -1/2 ; z=-3/2

th2: y+1/3=0

th3 : z-2=0

(tự làm nha)

27 tháng 6 2018

1)  Với x,y khác 0, Ta có

\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)

Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)

2) Ta có:

\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)

Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)

Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)

Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)

Vậy......

30 tháng 11 2021

\(=\frac{\left(x^3\right)^2-\left(y^3\right)^2}{\left[\left(x^2\right)^2-\left(y^2\right)^2\right]-xy\left(x^2-y^2\right)}=\)

\(=\frac{\left(x^3-y^3\right)\left(x^3+y^3\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)-xy\left(x^2-y^2\right)}=\)

\(=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2-xy\right)}=\)

\(=\frac{\left(x^2-y^2\right)\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)}{\left(x^2-y^2\right)\left(x^2-xy+y^2\right)}=x^2+xy+y^2\)

30 tháng 11 2021

Cảm ơn bạn Nguyễn Ngọc Anh Minh nhiều nha! :)

30 tháng 9 2020

a. Ta có : (x + y)[(x - y)2 + xy]

= (x + y)(x2 - 2xy + y2 + xy)

= (x + y)(x2 - xy + y2)

= x3 + y3 

b. Ta có : x3 + y3 - xy(x + y) 

= x3 + y3 - x2y - xy2

=x2(x - y) + y2(y - x)

= (x - y)(x2 - y2)

= (x - y)2.(x + y) đpcm

c) Ta có (x + y)3 - 3xy(x + y)

= (x + y)[(x + y)2 - 3xy)

= (x + y)(x2 + 2xy + y2 - 3xy)

= (x + y)(x2 - xy + y2) (đpcm)

30 tháng 9 2020

a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )

b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )

c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )

17 tháng 5 2016

a/ Vế trái = x3 + x2 + x - x2 - x - 1 = x3 - 1 (= vế phải)

b/ hình như đề sai

17 tháng 5 2016

b/ Vế trái = x4 + x3y + x2y2 + xy3 - x3y - x2y2 - xy3 - y4 = x4 - y4 (= vế phải)