K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

0                                        

17 tháng 8 2015

2a2b+2ab2=2ab.(a+b)

thay a+b=0 ta được:

2a2b+2ab2=2ab.0=0

22 tháng 12 2016

a^2 - 2ab - 3b^2 = 0

<=> a^2 - 3ab + ab - 3b^2 = 0

<=> a(a - 3b) + b(a - 3b) = 0

<=> (a - 3b)(a + b) = 0

=> a - 3b = 0 hoặc a + b = 0

=> a = 3b hoặc a = -b

+ Nếu a = 3b

A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)

A = (7.3b+2b)/(2.3b+b) + (9.3b-5b)/(2.3b-b)

A = 23b/7b + 22b/5b

A = 23/7 + 22/5 = 269/35

+ Nếu a = -b

A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)

A = (-7b+2b)/(-2b+b) + (-9b-5b)/(-2b-b)

A = -5b/-b + (-14b/-3b)

A = 5 + 14/3 = 29/3

22 tháng 12 2016

a^2-2ab-3b^2=0

=>a^2-3ab+ab-3b^2=0

=>a(a-3b)+b(a-3b)=0

=>(a+b)(a-3b)=0

mà a,b khác 0 => a+b khác 0

=>a-3b=0

=>a=3b

Thay vào A ta được:

A=(7a+2b)/(2a+b)+(9a-5b)/(2a-b)

=(7.3b+2b)/(2.3b+b)+(9.3b-5b)/(2.3b-b)

=23b/7b+22b/5b=23/7+22/5=......

14 tháng 1 2017

ta có:a-2ab-3b2=0

=>a2-3ab+ab-3b2=0

=>a(a-3b)+b(a-3b)=0

=>(a+b)(a-3b)=0

vìa,b khác 0=>a-3b=0

=>a=3b

thay vào A ta được:

A=(7.3b+2b)/(2.3b+b)+9=(9.3b-5b)/(2.3b-b)

  =23b/7b+22b/5b

  =23/7+22/5

  =269/35

Vậy A=269/35

NV
26 tháng 12 2021

\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)

\(P=2\left(\dfrac{a}{b}\right)+\left(\dfrac{b}{a}\right)-2=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{7}{4}\left(\dfrac{a}{b}\right)-2\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{7}{4}.2-2=\dfrac{5}{2}\)

\(P_{min}=\dfrac{5}{2}\) khi \(a=2b\)

22 tháng 6 2017

Bài này bạn cũng biến đổi tương đương nhé, tương tự ở đây

bạn tự giải đi ko đc thì bảo mk

29 tháng 5 2018

a + b + 2a2 + 2b2\(2ab+2a\sqrt{b}+2b\sqrt{a}\)

⇔ a + b + 2a2 + 2b2 - \(2ab-2a\sqrt{b}-2b\sqrt{a}\) ≥ 0

⇔ a2 - 2ab + b2 + a2 - 2a\(\sqrt{b}+b+b^2-2b\sqrt{a}+a\) ≥ 0

⇔ ( a - b)2 + ( a - \(\sqrt{b}\) )2 + ( b - \(\sqrt{a}\))2 ≥ 0 ( Luôn đúng )

29 tháng 5 2018

Dấu \("="\) xảy ra khi ....................