K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

.....................................................

chúc cậu hok tốt!

9 tháng 4 2018

Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có : 

\(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi \(\left(x-3\right)\left(5-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-3\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le5\end{cases}}}\)

\(\Rightarrow\)\(3\le x\le5\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-3\le0\\5-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge5\end{cases}}}\) ( loại ) 

Do đó : 

\(2a=2\) \(\Rightarrow\) \(a=\frac{2}{2}=1\)

Vậy \(a=1\)  khi \(3\le x\le5\)

Chúc bạn học tốt ~ 

5 tháng 5 2018

Ta có \(f\left(x\right)\)có nghiệm là x = -1

=> \(f\left(-1\right)=0\)

=> \(a^2\left(-1\right)^2-b+3=0\)

=> \(a^2-b=-3\)

=> \(-\left(a^2-b\right)=-\left(-3\right)\)

=> \(b-a^2=3\)

và \(g\left(2\right)=4b-2\left(2a^2+3\right)-5\)

=> \(g\left(2\right)=4b-4a^2+6-5\)

=> \(g\left(2\right)=4\left(b-a^2\right)+1\)

=> \(g\left(2\right)=4.3+1=13\ne0\)

Vậy x = 2 không phải là nghiệm của đa thức \(g\left(x\right)=bx^2-\left(2a^2+3\right)x-5\)

8 tháng 1 2017

Thay x = - 1, y = 1 vào biểu thức, ta được :

a(-1)(-1 – 1) + 13 (- 1 + 1) = (-a).(-2) + 1.0 = 2a

Vậy đánh dấu x vào ô tương ứng với 2a.