K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có : 

\(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi \(\left(x-3\right)\left(5-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-3\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le5\end{cases}}}\)

\(\Rightarrow\)\(3\le x\le5\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-3\le0\\5-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge5\end{cases}}}\) ( loại ) 

Do đó : 

\(2a=2\) \(\Rightarrow\) \(a=\frac{2}{2}=1\)

Vậy \(a=1\)  khi \(3\le x\le5\)

Chúc bạn học tốt ~ 

NV
23 tháng 1 2021

\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)

\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)

\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\) 

Pt đã cho luôn có 3 nghiệm (như trên) với mọi a

\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)

\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất

17 tháng 7 2019

@Akai Haruma help me,ple

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 1:

Ta thấy \(|x-3|\geq 0; |5x-1|\geq 0, \forall x\in\mathbb{R}\)

Do đó để tổng \(2|x-3|+|5x-1|=0\) thì \(|x-3|=|5x-1|=0\)

\(\Rightarrow \left\{\begin{matrix} x=3\\ x=\frac{1}{5}\end{matrix}\right.\) (vô lý)

Do đó PT vô nghiệm

Bài 2: Ta xét các khoảng, đoạn giá trị của $x$ để phá trị tuyệt đối.

\(2|x|-|x+1|=2\)

TH1: \(x\geq 0\Rightarrow \left\{\begin{matrix} |x|=x\\ |x+1|=x+1\end{matrix}\right.\). PT trở thành:

\(2x-(x+1)=2\Leftrightarrow x=3\) (thỏa mãn)

TH2: \(0>x\geq -1\Rightarrow \left\{\begin{matrix} |x|=-x\\ |x+1|=x+1\end{matrix}\right.\). PT trở thành:

\(-2x-(x+1)=2\Leftrightarrow x=-1\) (t/m)

TH3: \(x< -1\Rightarrow \left\{\begin{matrix} |x|=-x\\ |x+1|=-(x+1)\end{matrix}\right.\). PT trở thành:

\(-2x+(x+1)=2\Leftrightarrow x=-1\) (loại vì $x< -1$)

Vậy $x=-1$ hoặc $x=3$

12 tháng 2 2017

Quy đồng lên, lấy MTC là (a-b)(b-c)(a-c)

22 tháng 12 2016

2x+4<a2 -ax

2x-ax<a2 -4

(2-a)x<(a--2)(a+2)

-(2-a)x >(2-a)(2+a)

-x>2+a

=> x<-(2+a)

22 tháng 12 2016

\(\Leftrightarrow2x+4+ax-a^2<0\)

\(\Leftrightarrow\left(2+a\right)x<\left(a-2\right)\left(a+2\right)\)

nếu a=-2=> vô nghiệm

nếu a<-2=>x>(a-2)

nếu a>-2=> x<(a-2)

1 tháng 6 2023

\(\left|x-2\right|=\left|2x-3\right|\)

Nếu : \(\left\{{}\begin{matrix}2x-3\ge0\Leftrightarrow2x\ge3\Leftrightarrow x\ge\dfrac{3}{2}\\2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2x-3\\x-2=-\left(2x-3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=-3+2\\x-2=-2x+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=-1\\3x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

__

\(\left|5-x\right|=\left|x+2\right|\)

Nếu : \(\left\{{}\begin{matrix}x+2\ge0\Leftrightarrow x\ge-2\\x+2< 0\Leftrightarrow x< -2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5-x=x+2\\5-x=-\left(x+2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=2-5\\5-x=-x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-3\\0=-7\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(ktm\right)\\0=-7\left(ktm\right)\end{matrix}\right.\)

Vậy pt vô nghiệm