K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:

\(BH^2=HA\cdot HC\)

\(\Leftrightarrow BH^2=2\cdot6=12\)

hay \(BH=2\sqrt{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔBHA vuông tại H, ta được:

\(BA^2=BH^2+HA^2\)

\(\Leftrightarrow AB^2=\left(2\sqrt{3}\right)^2+2^2=12+4=16\)

hay BA=4(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BA^2+BC^2\)

\(\Leftrightarrow BC^2=8^2-4^2=48\)

hay \(BC=4\sqrt{3}\left(cm\right)\)

b) Xét ΔABC vuông tại B có 

\(\sin\widehat{A}=\dfrac{BC}{CA}=\dfrac{4\sqrt{3}}{8}=\dfrac{\sqrt{3}}{2}\)

\(\cos\widehat{A}=\dfrac{BA}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)

14 tháng 3 2022

1.A
2.A
3.B
4.C
5.B
6.C
7.A
8.A
9.B
10.A
11.B
12.A
13.C
14.B
15.B
16.A
17.A
18.A
19.A
20.C

Bài 2: 

a: Xét ΔABC có

X là trung điểm của BC

Y là trung điểm của AB

Do đó: XY là đường trung bình

=>XY//AC và XY=AC/2=3,5(cm)

hay XZ//AC và XZ=AC

b: Xét tứ giác AZBX có 

Y là trung điểm của AB

Y là trung điểm của ZX

Do đó: AZBX là hình bình hành

mà \(\widehat{AXB}=90^0\)

nên AZBX là hình chữ nhật

d: Xét tứ giác AZXC có

XZ//AC

XZ=AC

Do đó: AZXC là hình bình hành

2 tháng 10 2023

Bài 5:

a) \(x^2-xy+x-y\)

\(=\left(x^2-xy\right)+\left(x-y\right)\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

b) \(xz+yz+4x+4y\)

\(=\left(xz+yz\right)+\left(4x+4y\right)\)

\(=z\left(x+y\right)+4\left(x+y\right)\)

\(=\left(z+4\right)\left(x+y\right)\)

c) \(x^2-x-y^2+y\)

\(=\left(x^2-y^2\right)-\left(x-y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-1\right)\)

d) \(x^2+2x+2z-z^2\)

\(=\left(x^2-z^2\right)+\left(2x+2z\right)\)

\(=\left(x+z\right)\left(x-z\right)+2\left(x+z\right)\)

\(=\left(x+z\right)\left(x-z+2\right)\)

19 tháng 12 2021

Câu 4: 

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

19 tháng 12 2021

Câu 1:

\(a,=\dfrac{1}{2}+9\cdot\dfrac{1}{9}-18=\dfrac{1}{2}+1-18=-\dfrac{33}{2}\\ b,=2-1+4\cdot\dfrac{1}{4}+9\cdot\dfrac{1}{9}\cdot9=1+1+9=11\\ c,=-21,3\left(54,6+45,4\right)=-21,3\cdot100=-2130\\ d,B=\left(\dfrac{1}{16}+\dfrac{1}{2}-\dfrac{1}{16}\right):\left(\dfrac{1}{8}-\dfrac{1}{8}+1\right)=\dfrac{1}{2}:1=\dfrac{1}{2}\)

20 tháng 5 2021

Câu 1: Sống chết mặc bay - Phạm Duy Tốn

Phương thức biểu đạt: tự sự 

Câu 2: quan vui vẻ >< dân khổ cực

20 tháng 5 2021

Câu 1: - Trích từ văn bản Sống chết mặc bay của Phạm Duy Tốn

            - PTBĐ chính: Tự sự

21 tháng 3 2022

X = -2/5- 3/10

X= -7/10

27 tháng 9 2021

\(a,\) Áp dụng t/c dtsbn:

\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}=\dfrac{5x}{50}=\dfrac{2z}{42}=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\\ \Rightarrow\left\{{}\begin{matrix}x=20\\y=12\\z=42\end{matrix}\right.\\ b,\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{124}{62}=2\\ \Rightarrow\left\{{}\begin{matrix}x=30\\y=40\\z=56\end{matrix}\right.\)

\(c,\) Áp dụng t/c dtsbn

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\\ \Rightarrow\left\{{}\begin{matrix}x=12\cdot\dfrac{3}{2}=18\\y=12\cdot\dfrac{4}{3}=16\\z=12\cdot\dfrac{5}{4}=15\end{matrix}\right.\)

\(d,\) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(xy=54\Rightarrow2k\cdot3k=54\Rightarrow k^2=9\Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=9\\x=-6;y=-9\end{matrix}\right.\)

\(e,\) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\Rightarrow x=5k;y=3k\)

\(x^2-y^2=4\Rightarrow25k^2-9k^2=4\Rightarrow16k^2=4\Rightarrow k^2=\dfrac{1}{4}\\ \Rightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2};y=\dfrac{3}{2}\\x=-\dfrac{5}{2};y=-\dfrac{3}{2}\end{matrix}\right.\)

\(f,\) Áp dụng t/c dtsbn:

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)

\(\Rightarrow\left\{{}\begin{matrix}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+z=3x-1\\x+y+z=3y-1\\x+y+z=3z+2\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}3x-1=\dfrac{1}{2}\\3y-1=\dfrac{1}{2}\\3z+2=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\\z=-\dfrac{1}{2}\end{matrix}\right.\)