1.x(y-7)+5y=40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
1/ Ta có: -2x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{-2}=\dfrac{x+y}{5+\left(-2\right)}=\dfrac{30}{3}=10\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=10\\\dfrac{y}{-2}=10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.\left(-2\right)-20\end{matrix}\right.\)
Vậy x = 50; y = -20.
2/ Ta có: 3x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\\\dfrac{y}{3}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.3=15\end{matrix}\right.\)
Vậy x = 25; y = 15.
3/ Ta có: 4x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\\\dfrac{y}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.4=20\end{matrix}\right.\)
Vậy x = 25; y = 20.
4/ Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{7}{7}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=1\\\dfrac{y}{-5}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)
Vậy x = 2; y = -5.
5/ Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)
Vậy x = 38; y = 42.
\(-2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{-2}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{-2}=\dfrac{x+y}{5+-2}=\dfrac{30}{3}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.-2=-20\end{matrix}\right.\)
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.3=15\end{matrix}\right.\)
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\Rightarrow\dfrac{3x}{15}=\dfrac{2y}{8}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.4=20\end{matrix}\right.\)
\(x:2=y:\left(-5\right)\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{7}{7}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.2=2\\y=1.\left(-5\right)=-5\end{matrix}\right.\)
\(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)
Ta có \(\dfrac{x+5}{7}=\dfrac{40}{140}\)
\(\Leftrightarrow\dfrac{x+5}{7}=\dfrac{2}{7}\\ \Leftrightarrow x+5=2\\ \Leftrightarrow x=-3\)
Tương tự : \(\dfrac{-30}{5y+5}=\dfrac{40}{140}\)
\(\Leftrightarrow\dfrac{-6}{y+1}=\dfrac{2}{7}\\ \Leftrightarrow\left(y+1\right)\cdot2=-6\cdot7\\ \Leftrightarrow2y+2=-42\)
\(\Leftrightarrow2y=-44\\ \Leftrightarrow y=-22\)
Vậy..................................
Ta có:
x5=y6⇒x20=y24x5=y6⇒x20=y24 (1)(1)
y8=z7=y24=z21y8=z7=y24=z21 (2)(2)
Từ (1)(1) và (2)(2) ⇒x20=y24=z21⇒x20=y24=z21
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x20=y24=z21=x+y−z20+24−21=6923=3x20=y24=z21=x+y-z20+24-21=6923=3
⇒⎧⎪⎨⎪⎩x=60y=72z=63⇒{x=60y=72z=63
Vậy x=60;y=72x=60;y=72 và z=63
1. \(\dfrac{x}{7}=\dfrac{y}{4};x-y=30\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x-y}{7-4}=\dfrac{30}{3}=10\)
\(=>\dfrac{x}{7}=10=>x=10.7=70\)
=> \(\dfrac{y}{4}=10=>y=10.4=40\)
Vậy x=70;y=40
2. Tương tự
3.\(2x=3y;x+y=10\)
Ta có: \(2x=3y=>\dfrac{y}{2}=\dfrac{x}{3}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y}{2}=\dfrac{x}{3}=\dfrac{x+y}{3+2}=\dfrac{10}{5}=2\)
\(=>\dfrac{y}{2}=2=>y=2.2=4\)
=> \(\dfrac{x}{3}=2=>x=2.3=6\)
Vậy y=4;x=6
4. 5. Tương tự
6. \(\dfrac{x}{5}=\dfrac{y}{2};3x-2y=44\)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{2y}{4}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{4}=\dfrac{3x-2y}{15-4}=\dfrac{44}{11}=4\)
=> \(\dfrac{x}{5}=4=>x=4.5=20\)
=> \(\dfrac{y}{2}=4=>y=4.2=8\)
Vậy x=20;y=8
7. Tương tự
1, \(\dfrac{x}{7}=\dfrac{y}{4}\) và \(x-y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x-y}{7-4}=\dfrac{30}{3}=10\)
\(\Rightarrow\dfrac{x}{7}=10\Rightarrow x=70\)
\(\Rightarrow\dfrac{y}{4}=10\Rightarrow y=40\)
2, \(\dfrac{x}{4}=\dfrac{y}{-7}\) và \(x-y=30\)
Làm tương tự câu 1.
3, \(2x=3y\) và \(x+y=10\)
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{10}{5}=2\)
\(\Rightarrow\dfrac{x}{3}=10\Rightarrow x=30\)
\(\Rightarrow\dfrac{y}{2}=10\Rightarrow y=20\)
4, \(4x=3y\) và \(x-y=11\)
\(4x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x-y}{3-4}=\dfrac{11}{-1}=-11\)
\(\Rightarrow\dfrac{x}{3}=-11\Rightarrow x=-33\)
\(\Rightarrow\dfrac{y}{4}=-11\Rightarrow y=-44\)
5, \(3x=5y\) và \(x+y=40\)
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\Rightarrow\dfrac{x}{5}=5\Rightarrow x=25\)
\(\Rightarrow\dfrac{y}{3}=5\Rightarrow y=15\)
- Mệt @@ lần sau đăng từng câu một thôi bn nhé!
Câu x ) là bằng - 5 nhé mấy bạn. Làm giúp mình tất cả nhé ! Mình cảm ơn nhiều lắm !
//\(x,y\inℤ\)đúng không em ???
\(x\left(y-7\right)+5y=40\)
\(\Rightarrow x\left(y-7\right)+5\left(y-7\right)=5\)
\(\Rightarrow\left(x+5\right)\left(y-7\right)=5\)
Vì \(x,y\inℤ\Rightarrow x+5;y-7\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng :
Vậy \(\left(x;y\right)\in\left\{\left(-4;12\right);\left(-6;2\right);\left(0;8\right);\left(-10;6\right)\right\}\)