K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

`a)a^6+b^6`

`=a^6+2a^3b^3+b^6-2a^2b^3`

`=(a^3+b^3)^2-2(ab)^3`

`=[(a+b)(a^2-ab+b^2)])^2-2.(-36)^3`

`={10[(a+b)^2-3ab]}^2-2.(-46656)`

`=100.[10^2-3.(-36)]^2+93312`

`=100.(100+108)^2+93312`

`=100.43264+93312`

`=4326300+93312`

`=4419712`

11 tháng 7 2021

Để khẳng định đáp án `441972` là đúng ta thử lại như sau:

`a+b=10=>b=10-a`

`a.b=-36`

`=>a(10-a)=-36`

`<=>10a-a^2=-36`

`<=>a^2-10a-36=0`

`<=>a^2-10a+25-61=0`

`<=>(a-5)^2-61=0`

`<=>(a-5)^2=61`

`<=>` \(\left[ \begin{array}{l}a=5-\sqrt{61}\\a=5+\sqrt{61}\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}b=5+\sqrt{61}\\b=5-\sqrt{61}\end{array} \right.\) 

`=>a^6+b^6=(5-sqrt{61})^2+(5+\sqrt{61})^2=4419712`(đoạn này bạn có thể bấm máy tính để check lại)

NV
23 tháng 1 2021

a. Do vai trò của a;b;c là như nhau, không mất tính tổng quát giả sử \(a\ge b\ge c\)

BĐT tương đương:

\(\left(a-b\right)\left[a^2-ac+bc-b^2\right]+c\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left[\left(a-b\right)\left(a+b\right)-c\left(a-b\right)\right]+c\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b-c\right)+c\left(a-b\right)\left(b-c\right)\ge0\) (đúng)

b.

Ta có: \(a^6+a^6+a^6+a^6+a^6+b^6\ge6\sqrt[6]{a^{30}b^6}=6a^5b\)

Tương tự: \(5b^6+c^6\ge6b^5c\) ; \(5c^6+a^6\ge6c^5a\)

Cộng vế với vế:

\(6\left(a^6+b^6+c^6\right)\ge6\left(a^5b+b^5c+c^5a\right)\)

20 tháng 10 2021

\(a,a^2+b^2=\left(a+b\right)^2-2ab=3^2-2\left(-10\right)=29\\ b,a^2+b^2=\left(a-b\right)^2+2ab=2^2+2\cdot24=52\)

11 tháng 7 2021

`a)a(2+b)+b(a+2)`

`=2a+ab+ab+2b`

`=2(a+b)+2ab`

`=2.10+2.(-36)`

`=20-72=-52`

`b)a^2+b^2`

`=(a+b)^2-2ab`

`=10^2-2.(-36)`

`=100+72=172`

`c)a^3+b^3`

`=(a+b)(a^2-ab+b^2)`

`=10[(a+b)^2-3ab]`

`=10[10^2-3.(-36)]`

`=10(100+108)`

`=10.208=2080`

11 tháng 7 2021

a, \(=>2a+ab+ab+2b=2\left(a+b+ab\right)=2\left(10-36\right)=-52\)

b, \(a^2+b^2=a^2+2ab+b^2-2ab=\left(a+b\right)^2-2ab=\left(10\right)^2-2\left(-36\right)=172\)

c, \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=10\left[\left(a+b\right)^2-3ab\right]\)

\(=10\left[10^2-3\left(-36\right)\right]=2080\)

23 tháng 12 2020

\(a^6+a^4+a^2b^2+b^4-b^6\\ =a^6-b^6+a^4+a^2b^2+b^4\\ =\left(a^6-b^6\right)+\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2\right)^3-\left(b^2\right)^3\right]+\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^2+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left(a^2-b^2+1\right)\left(a^4+2a^2b^2+b^4-a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]\\ =\left(a^2-b^2+1\right)\left(a^2+b^2-ab\right)\left(a^2+b^2+ab\right)\)

a6, a4 là số mũ hay hệ số vậy bn

8 tháng 12 2021
Ta có:a-b=10=> a*2 - 2ab +b*2=100 a*2+b*2=100+2ab=100-2.24=52 => a*2 + b*2 + 2ab = 52-2.24=4 (a+b)*2=4