Cho biểu thức P = (1/2^2 - 1) x (1/3^2 - 1) x (1/4^2 - 1) . . . (1/2021^2 - 1). So sánh P với 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
A=1+21+22 +...+22021
2A = 2( 1+21+22 +...+22021 )
2A = 2 + 22 + 23 + ... + 22022
2A - A = ( 2 + 22 + 23 + ... + 22022 ) - ( 1+21+22 +...+22021 )
A = 22022 - 1
2x = A + 1
=> 2x = 22022 - 1 + 1
=> 2x = 22022
=> x = 2022
Vậy x = 2022
2A=2+2^2+...+2^2022
=>A=2^2022-1
2^x=A+1
=>2^x=2^2022
=>x=2022
Trả lời:
\(P=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2021^2}-1\right)\)
\(=\frac{1-2^2}{2^2}\cdot\frac{1-3^2}{3^2}\cdot\frac{1-4^2}{4^2}\cdot...\cdot\frac{1-2021^2}{2021^2}\)
\(=\frac{-3}{2^2}\cdot\frac{-8}{3^2}\cdot\frac{-15}{4^2}\cdot...\cdot\frac{-4084440}{2021^2}\)
\(=\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{4084440}{2021^2}\) ( vì tích trên có 2020 thừa số, mà tích của 2020 thừa số âm là số dương )
\(=\frac{3\cdot8\cdot15\cdot...\cdot4084440}{2^2\cdot3^2\cdot4^2\cdot...\cdot2021^2}\)
\(=\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot2020\cdot2022}{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot2021\cdot2021}\)
\(=\frac{\left(1\cdot2\cdot3\cdot...\cdot2020\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot2022\right)}{\left(2\cdot3\cdot4\cdot...\cdot2021\right)\cdot\left(2\cdot3\cdot4\cdot...\cdot2021\right)}\)
\(=\frac{1\cdot2022}{2021\cdot2}=\frac{1011}{2021}>\frac{1011}{2022}=\frac{1}{2}\)
Vậy \(P>\frac{1}{2}\)
Kết luận B<1/2