5^2024và 2^2024 viết liền nhau được số có a chữ số tính b(b^2=a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
Giả sử 21991 có x chữ số , 51991 có y chữ số .
Cần chứng minh rằng x + y = 1992 .
Số tự nhiên nhỏ nhất có x chữ số là 10x-1 . Số tự nhiên nhỏ nhất có x + 1 chữ số là 10x.
Ta có : 10x-1 < 21991< 10x
Tương tự : 10y-1 < 51991 < 10y
Do đó : 10x-1, 10y-1 < 21991, 51991 < 10x , 10y .
=> 10x+y-2 < 101991 < 10x+y
x + y - 2 < 1991 < x + y
Do x + y \(\in\)N nên x + y - 1 = 1991
Do đó x + y = 1992
Vậy 21991 và 51991 viết liền nhau tạo thành số có 1992 chữ số .
Gọi số chữ số của 22017 là x, số chữ số của 52017 là y
Số tự nhiên nhỏ nhất có x chứ số là 10x-1 số tự nhiên nhỏ nhất có x + 1 chữ số là 10x
=> 10x-1 < 22017 < 10x (1)
Số tự nhiên nhỏ nhất có y chữ số là 10y-1, số tự nhiên nhỏ nhất có y + 1 chữ số là 10y
=> 10y-1 < 52017 < 10y (2)
Từ (1) và (2) => 10x-1.10y-1 < 22017.52017 < 10x.10y
=> 10x+y-2 < 102017 < 10x+y
=> x + y - 2 < 2017 < x + y
Mà x, y thuộc N => x + y thuộc N
=> x + y = 2018
Vậy 2 số này ghép lại được 1 số có 2018 chữ số
111111111111111111111111111111111111111111111111111111 1111111111111111111112222 2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222666666666666666666666666666666666666666666666666666666666666666666666666666666666666666966666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666c66666666666666666666666666coooooooooooooooooooooooooooooocoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooocooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooocooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo99999999999999999999999999999999988888888888888888888888888888888888888888888888888888888888888888888888888888
Giả sử \(2^{2014}\) có x chữ số và \(5^{2014}\) có y chữ số
\(\Rightarrow\) Số viết liền của a và b có \(x+y\) chữ số
Theo đề bài ta có
\(10^{x-1}< 2^{2014}< 10^x\\ 10^{y-1}< 5^{2014}< 10^y\)
\(\Rightarrow10^{x-1}\cdot10^{y-1}< 2^{2014}\cdot5^{2014}< 10^x\cdot10^y\\ \Rightarrow10^{x+y-2}< 10^{2014}< 10^{x+y}\\ \Rightarrow x+y-2< 2014< x+y\\ \Rightarrow2014< x+y< 2016\\ \Rightarrow x+y=2015\)
Vậy số tạo bởi a và b có 2015 cs
Gọi số chữ số của 21993 là x; số chữ số của 51993 là y
=> 10x-1 < 21993 < 10x (1)
10y-1 < 51993 < 10y (2)
Từ (1) và (2) => 10x-1.10y-1 < 21993.51993 < 10x.10y
=> 10x+y-2 < 101993 < 10x+y
=> x + y - 2 < 1993 < x + y
=> x + y - 1 = 1993
=> x + y = 1994
Vậy a = 21993 và b = 51993 viết liền nhau tạo thành số có 1994 chữ số