Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: d=(m+n,m2+n2)d=(m+n,m2+n2)
⇒⎧⎨⎩m+n⋮dm2+n2⋮d⇒{m+n⋮dm2+n2⋮d
⇒⎧⎨⎩m+n⋮d(m+n)2−2mn⋮d⇒{m+n⋮d(m+n)2−2mn⋮d
⇒⎧⎨⎩m+n⋮d2mn⋮d⇒{m+n⋮d2mn⋮d
⇒⎧⎨⎩2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d⇒{2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d
⇒⎧⎨⎩2m2⋮d2n2⋮d⇒{2m2⋮d2n2⋮d
d|(2m2,2n2)=2(m2,n2)=2d|(2m2,2n2)=2(m2,n2)=2
⇒d=1⇒d=1 hoặc d=2d=2
- Nếu m,nm,n cùng lẻ thì d=2d=2
- Nếu m,nm,n khác tính chẵn lẻ thì d=1
Với A là một tập con của tập hợp {1;2;...;2014} thỏa mãn yêu cầu đề bài toán, gọi a là phần tử nhỏ nhất của A
Xét \(b\in A,b\ne a\) ta có b>a và \(\frac{a^2}{b-a}\ge a\Rightarrow b\le2a\)(1)
Gọi c,d là phần tử lớn nhất trong A, c<d từ (1) ta có: \(d\le2a\le2c\left(2\right)\)
Theo giả thiết \(\frac{c^2}{d-c}\in A\). Mặt khác do (2) nên \(\frac{c^2}{d-c}\ge\frac{c^2}{2c-c}\ge c\Rightarrow\frac{c^2}{d-c}\in\left\{c;d\right\}\)
Xét các trường hợp sau:
- Trường hợp 1: \(\frac{c^2}{d-c}=d\)trong trường hợp này ta có: \(\frac{c}{d}=\frac{-1+\sqrt{5}}{2}\) mâu thuẫn với \(c,d\inℤ^+\)
- Trường hợp 2: \(\frac{c^2}{d-c}=c\)trong trường hợp này ta có: d=2c. Kết hợp với (2) => c=d và d=2a
Do đó: A={a;2} với a=1;2;...;1007. Các tập hợp trên đều thỏa mãn yêu cầu đề bài
Vậy có tất cả 1007 tập hợp thỏa mãn
Đề đúng (Hậu Giang 2013-2014) :Cho \(a^3+3ab^2=2014\)và \(b^3+3a^2b=2013\).Tính \(P=a^2-b^2\)
Ta có:
\(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2=\left(a^3+3ab^2\right)+\left(b^3+3a^2b\right)=2014+2013=4027\)
\(\Rightarrow a+b=\sqrt[3]{4027}\)
\(\left(a-b\right)^3=a^3+3ab^2-\left(b^3+3a^2b\right)=2014-2013=1\)
\(\Rightarrow a-b=1\)
do đó \(P=a^2-b^2=\left(a+b\right)\left(a-b\right)=1.\sqrt[3]{4027}=\sqrt[3]{4027}\)
buithianhtho, Vũ Minh Tuấn, Băng Băng 2k6, No choice teen, Akai Haruma, Nguyễn Thanh Hằng, Duy Khang,
@tth_new, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ, @Nguyễn Huy Thắng
Mn giúp e vs ạ! Cần gấp ạ!
Thanks nhiều lắm ạ!
Ta có:
\(\left(a^2+b^2\right)^2=a^4+b^4+2a^2b^2\)=> \(a^2b^2=\frac{1}{4}\)
\(a^2+b^2=\frac{1}{2^0}\)
\(a^4+b^4=\frac{1}{2^1}\)
\(a^6+b^6=\left(a^4+b^4\right)\left(a^2+b^2\right)-a^2b^2\left(a^2+b^2\right)=\frac{1}{2}.1-\frac{1}{4}.1=\frac{1}{4}=\frac{1}{2^2}\)
\(a^8+b^8=\left(a^6+b^6\right)\left(a^2+b^2\right)-a^2b^2\left(a^4+b^4\right)=\frac{1}{4}.1-\frac{1}{4}.\frac{1}{2}=\frac{1}{8}=\frac{1}{2^3}\)
...
Như vậy chúng ta sẽ đoán được: \(a^{2n+2}+b^{2n+2}=\frac{1}{2^n}\)(1) với n là số tự nhiên.
Chúng ta chứng minh (1) quy nạp theo n.
+) Với n = 0; có: \(a^2+b^2=\frac{1}{2^0}=1\)đúng
=> (1) đúng với n = 1
+) Giả sử (1) đúng cho tới n
khi đó: \(a^{2n+2}+b^{2n+2}=\frac{1}{2^n}\)
+) Ta chứng minh (1) đúng với n + 1
Ta có: \(a^{2\left(n+1\right)+2}+b^{2\left(n+1\right)+2}=a^{2n+4}+b^{2n+4}\)
\(=\left(a^{2n+2}+b^{2n+2}\right)\left(a^2+b^2\right)-a^2b^2\left(a^{2n}+b^{2n}\right)\)
\(=\frac{1}{2^n}.1-\frac{1}{4}.\frac{1}{2^{n-1}}=\frac{1}{2^n}-\frac{1}{2^{n+1}}=\frac{1}{2^{n+1}}\)
=> (1) đúng với n + 1
Vậy (1) đúng với mọi số tự nhiên n.
Do đó:
\(P=a^{2020}+b^{2020}=a^{2.1009+2}+b^{2.1009+2}=\frac{1}{2^{1009}}\)
Giả sử \(2^{2014}\) có x chữ số và \(5^{2014}\) có y chữ số
\(\Rightarrow\) Số viết liền của a và b có \(x+y\) chữ số
Theo đề bài ta có
\(10^{x-1}< 2^{2014}< 10^x\\ 10^{y-1}< 5^{2014}< 10^y\)
\(\Rightarrow10^{x-1}\cdot10^{y-1}< 2^{2014}\cdot5^{2014}< 10^x\cdot10^y\\ \Rightarrow10^{x+y-2}< 10^{2014}< 10^{x+y}\\ \Rightarrow x+y-2< 2014< x+y\\ \Rightarrow2014< x+y< 2016\\ \Rightarrow x+y=2015\)
Vậy số tạo bởi a và b có 2015 cs