K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

Với A là một tập con của tập hợp {1;2;...;2014} thỏa mãn yêu cầu đề bài toán, gọi a là phần tử nhỏ nhất của A

Xét \(b\in A,b\ne a\) ta có b>a và \(\frac{a^2}{b-a}\ge a\Rightarrow b\le2a\)(1)

Gọi c,d là phần tử lớn nhất trong A, c<d từ (1) ta có: \(d\le2a\le2c\left(2\right)\)

Theo giả thiết \(\frac{c^2}{d-c}\in A\). Mặt khác do (2) nên  \(\frac{c^2}{d-c}\ge\frac{c^2}{2c-c}\ge c\Rightarrow\frac{c^2}{d-c}\in\left\{c;d\right\}\)

Xét các trường hợp sau:

  • Trường hợp 1: \(\frac{c^2}{d-c}=d\)trong trường hợp này ta có: \(\frac{c}{d}=\frac{-1+\sqrt{5}}{2}\) mâu thuẫn với \(c,d\inℤ^+\)
  • Trường hợp 2: \(\frac{c^2}{d-c}=c\)trong trường hợp này ta có: d=2c. Kết hợp với (2) => c=d và d=2a

Do đó: A={a;2} với a=1;2;...;1007. Các tập hợp trên đều thỏa mãn yêu cầu đề bài

Vậy có tất cả 1007 tập hợp thỏa mãn

18 tháng 7 2020

Vì A khác rỗng 

=> Tồn tại số a \(\in\)A => 1 - a \(\in\)A  và 1/a \(\in\)A

=> \(\frac{1}{1-a}\in A;1-\frac{1}{a}=\frac{a-1}{a}\in A\)

=> \(1-\frac{1}{1-a}\in A;\frac{a}{a-1}=1-\frac{1}{1-a}\in A\)

Mà A chỉ có chứa tối đa 5 phần tử 

=> \(a=1-\frac{1}{1-a}\Leftrightarrow a=\frac{a}{a-1}\Leftrightarrow\orbr{\begin{cases}a=2\\a=0\left(loai\right)\end{cases}}\Leftrightarrow a=2\)

Vậy tập A = { 2; -1; 1/2}

15 tháng 2 2020

ĐK phải có thêm x,y>0 nữa chứ nhỉ

\(E=\frac{2013}{x}+\frac{1}{2013y}=\left(\frac{2013}{x}+2013x\right)+\left(\frac{1}{2013y}+2013y\right)-2013\left(x+y\right)\)

\(=\left(\frac{2013}{x}+2013x\right)+\left(\frac{1}{2013y}+2013y\right)-2013\cdot\frac{2014}{2013}\)

\(=\left(\frac{2013}{x}+2013x\right)+\left(\frac{1}{2013y}+2013y\right)-2014\)

Áp dụng bđt cô si ta có: 

\(\frac{2013}{x}+2013x\ge2\sqrt{\frac{2013}{x}\cdot2013x}=2\cdot2013=4026\)

\(\frac{1}{2013y}+2013y\ge2\sqrt{\frac{1}{2013y}\cdot2013y}=2\)

Suy ra \(E\ge4026+2-2014=2014\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{2013}{x}=2013x\\\frac{1}{2013y}=2013y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2013}\end{cases}}\)

Vậy...

15 tháng 2 2020

Cảm ơn bạn nha

12 tháng 6 2020

Ta có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\Rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) (\(a;b;c\ne0\) )

\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1-2\left(\frac{ayz+bxz+cxy}{abc}\right)=1-2.0=1\)

=> đpcm

12 tháng 6 2020

á em đổi biến lộn ạ. Em định viết H;U;Y  cho đúng tên mình mà quen tay lộn vào Y;Z ạ

Đặt \(\left(\frac{x}{a};\frac{y}{b};\frac{z}{c}\right)\rightarrow\left(H;U;Y\right)\)

Khi đó ta có:

\(H+U+Y=1;\frac{1}{H}+\frac{1}{U}+\frac{1}{Y}=0\Rightarrow HU+UY+YH=0\)

Thay vào thì :

\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\left(H+U+Y\right)^2-2\left(HU+UY+YH\right)=1\)

Vậy ta có đpcm

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

Đặt $xy=a; x+y=b$ thì ta có: \(\left\{\begin{matrix} b^2-2a=4\\ b^2\geq 4a\end{matrix}\right.\)

$A=\frac{xy}{x+y+2}=\frac{a}{b+2}=\frac{b^2-4}{2(b+2)}=\frac{b-2}{2}$
Từ $b^2\geq 4a$. Thay $4a=2(b^2-4)$ có:

$b^2\geq 2(b^2-4)$

$\Leftrightarrow b^2\leq 8\Rightarrow b\leq 2\sqrt{2}$

Do đó: $A=\frac{b-2}{2}\leq \frac{2\sqrt{2}-2}{2}=\sqrt{2}-1$

Vậy $A_{\max}=\sqrt{2}-1$

21 tháng 10 2020

\(A=\frac{xy}{x+y+2}\)