\(x,y\in R\) thỏa \(x+y=\frac{2014}{2013}\) Tìm G...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

ĐK phải có thêm x,y>0 nữa chứ nhỉ

\(E=\frac{2013}{x}+\frac{1}{2013y}=\left(\frac{2013}{x}+2013x\right)+\left(\frac{1}{2013y}+2013y\right)-2013\left(x+y\right)\)

\(=\left(\frac{2013}{x}+2013x\right)+\left(\frac{1}{2013y}+2013y\right)-2013\cdot\frac{2014}{2013}\)

\(=\left(\frac{2013}{x}+2013x\right)+\left(\frac{1}{2013y}+2013y\right)-2014\)

Áp dụng bđt cô si ta có: 

\(\frac{2013}{x}+2013x\ge2\sqrt{\frac{2013}{x}\cdot2013x}=2\cdot2013=4026\)

\(\frac{1}{2013y}+2013y\ge2\sqrt{\frac{1}{2013y}\cdot2013y}=2\)

Suy ra \(E\ge4026+2-2014=2014\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{2013}{x}=2013x\\\frac{1}{2013y}=2013y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2013}\end{cases}}\)

Vậy...

15 tháng 2 2020

Cảm ơn bạn nha

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

22 tháng 9 2019

Nugget nghĩ pạn ghi lộn đề! Vì nếu x>0; y>0 -> x=1 và y=1 (giả thiết) thì làm sao x+y=1 được???

Thui Nugget về Kindergarten đây, tạm biệt.

22 tháng 9 2019

Nếu x=1/2; y=1/2 thì sao ?

8 tháng 5 2020

giúp mik vs cảm ơn mn

30 tháng 9 2016

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))

Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) . 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0

Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)

18 tháng 9 2016

\(\frac{x}{x^2-yz+2013}+\frac{y}{y^2-zx+2013}+\frac{z}{z^2-xy+2013}\)

\(=\frac{1}{\frac{x^2-yz+2013}{x}}+\frac{1}{\frac{y^2-zx+2013}{y}}+\frac{1}{\frac{z^2-xy+2013}{z}}\)

\(=\frac{1}{x+3y+3z+\frac{2yz}{x}}+\frac{1}{y+3z+3x+\frac{2xz}{y}}+\frac{1}{z+3x+3y+\frac{2xy}{z}}\)

\(\ge\frac{9}{7\left(x+y+z\right)+2xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\ge\frac{9}{7\left(x+y+z\right)+2xyz\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}=\)

\(=\frac{9}{7\left(x+y+z\right)+2xyz.\frac{1}{xyz}.\left(x+y+z\right)}=\frac{9}{9\left(x+y+z\right)}=\frac{1}{x+y+z}\)

Ta có đpcm

bó tay rùi bạn !!!! ~_~

65756578687696453724756545345363637635754754695622534434

22 tháng 12 2015

Mình trình bày bạn xem đúng không nhé:

\(x^2+y^2=\left(x+y\right)^2-2xy\le1-2xy\)
\(\Rightarrow A\ge\frac{1}{1-2xy}+\frac{1}{2xy}\Rightarrow A\ge\frac{1}{\left(1-2xy\right)2xy}\)

Áp dụng BĐT Cauchy \(\sqrt{\left(1-2xy\right)2xy}\le\frac{1-2xy+2xy}{2}=\frac{1}{2}\Rightarrow\left(1-2xy\right)2xy\le\frac{1}{4}\)

\(A\ge4\) Vậy min A = 4 khi x + y = 1 và 1 - 2xy = 2xy tức là x = y = 1/2 bạn nhé

21 tháng 11 2016

Điều kiện \(\hept{\begin{cases}x-2011>0\\y-2012>0\\z-2013>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2011\\y>2012\\z>2013\end{cases}}}\)

\(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{\sqrt{x-2011}}-\frac{1}{x-2011}+\frac{1}{\sqrt{y-2012}}-\frac{1}{y-2012}+\frac{1}{\sqrt{z-2013}}-\frac{1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\left(\frac{1}{x-2011}-\frac{1}{\sqrt{x-2011}}+\frac{1}{4}\right)+\left(\frac{1}{y-2012}-\frac{1}{\sqrt{y-2012}}+\frac{1}{4}\right)+\left(\frac{1}{z-2013}-\frac{1}{\sqrt{z-2013}}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2011}}-\frac{1}{4}\right)^2+\left(\frac{1}{\sqrt{y-2012}}-\frac{1}{4}\right)^2+\left(\frac{1}{\sqrt{z-2013}}-\frac{1}{4}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-2011}}=\frac{1}{4}\\\frac{1}{\sqrt{y-2012}}=\frac{1}{4}\\\frac{1}{\sqrt{z-2013}}=\frac{1}{4}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2011=16\\y-2012=16\\z-2013=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2027\\y=2028\\z=2029\end{cases}}}\)

11 tháng 2 2019

\(M=\frac{4}{x}+y=1\left(\frac{4}{x}+y\right)\ge\left(x+\frac{1}{y}\right)\left(\frac{4}{x}+y\right)\)

\(=4+xy+\frac{4}{xy}+1\ge4+2\sqrt{xy.\frac{4}{xy}}+1=4+2\sqrt{4}+1=9\)

Nên GTNN của M là 9 khi \(x=\frac{2}{3};y=3\)

13 tháng 2 2019

Tham khảo (phần lời giải của mình nha): Câu hỏi của Arons - Toán lớp 9 - Học toán với OnlineMath.Cách của anh Phát là 1 cách hay=)