Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Dự đoán \(M\) đạt min tại mỗi biến bằng \(\frac{2}{3}\).
Nên ta viết lại \(M=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT AM-GM cho hai lượng đầu và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(M\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{x+y}\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{\frac{4}{3}}=\frac{13}{3}\)
\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)
\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
Câu 1:
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)
Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)
\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)
Dấu = xảy ra khi x=y=1/2
Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)
CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)
Dấu = xảy ra khi x=y=z=1
Theo đề ta suy ra \(y\le1-3x\)
\(\Rightarrow\sqrt{xy}\le\sqrt{x\left(1-3x\right)}\)
Ta có \(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\ge\frac{1}{x}+\frac{1}{\sqrt{x\left(1-3x\right)}}\ge\frac{1}{x}+\frac{1}{\frac{x+\left(1-3x\right)}{2}}=\frac{2}{2x}+\frac{2}{-2x+1}\)
\(=2\left(\frac{1}{2x}+\frac{1}{-2x+1}\right)\ge2.\frac{\left(1+1\right)^2}{2x-2x+1}=8\)
Vậy \(A\ge8\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=1-3x=y\\\frac{1}{2x}=\frac{1}{-2x+1}\\3x+y=1\end{cases}}\) \(\Leftrightarrow\) \(x=y=\frac{1}{4}\)
\(M=\frac{4}{x}+y=1\left(\frac{4}{x}+y\right)\ge\left(x+\frac{1}{y}\right)\left(\frac{4}{x}+y\right)\)
\(=4+xy+\frac{4}{xy}+1\ge4+2\sqrt{xy.\frac{4}{xy}}+1=4+2\sqrt{4}+1=9\)
Nên GTNN của M là 9 khi \(x=\frac{2}{3};y=3\)
Tham khảo (phần lời giải của mình nha): Câu hỏi của Arons - Toán lớp 9 - Học toán với OnlineMath.Cách của anh Phát là 1 cách hay=)