Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
bài này có lập được bảng biến thiên, nhưng chắc chưa học nên làm cách cơ bản
ta có \(\frac{x^2}{x^2+yz+x+1}\le\frac{x^2}{2x\sqrt{yz+1}+x}=\frac{x}{2\sqrt{yz+1}+1}\) dấu "=" xảy ra khi x2=yz+1
ta lại có \(2=x^2+y^2+z^2=\left(x+y+z\right)^3-2x\left(y+z\right)-2yz\ge\left(x+y+z\right)^3-\frac{\left(x+y+z\right)^2}{2}-2yz\)
\(\Rightarrow\left(x+y+z\right)^2\le4\left(1+yz\right)\Rightarrow x+y+z\le2\sqrt{1+yz}\)
\(\Rightarrow\frac{y+z}{x+y+z+1}=1-\frac{x+1}{x+y+z+1}\le1-\frac{x+1}{2\sqrt{yz+1}+1}\)
do đó \(P\le\frac{x}{2\sqrt{yz+1}+1}+1-\frac{x+1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}=1-\frac{1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}\)
\(\le1-\frac{1}{yz+1+1+1}-\frac{1+yz}{9}=\frac{11}{9}-\left(\frac{1}{yz+3}+\frac{yz+3}{9}\right)\le\frac{11}{9}-\frac{2}{3}=\frac{5}{9}\)
dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1;y=1;z=0\\x=1;y=0;z=1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Dự đoán \(M\) đạt min tại mỗi biến bằng \(\frac{2}{3}\).
Nên ta viết lại \(M=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT AM-GM cho hai lượng đầu và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(M\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{x+y}\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{\frac{4}{3}}=\frac{13}{3}\)
\(M=\frac{4}{x}+y=1\left(\frac{4}{x}+y\right)\ge\left(x+\frac{1}{y}\right)\left(\frac{4}{x}+y\right)\)
\(=4+xy+\frac{4}{xy}+1\ge4+2\sqrt{xy.\frac{4}{xy}}+1=4+2\sqrt{4}+1=9\)
Nên GTNN của M là 9 khi \(x=\frac{2}{3};y=3\)
Tham khảo (phần lời giải của mình nha): Câu hỏi của Arons - Toán lớp 9 - Học toán với OnlineMath.Cách của anh Phát là 1 cách hay=)