Cho a+b+c = 2007 và \(\frac{1}{a+b}\)+ \(\frac{1}{b+c}\)+\(\frac{1}{c+a}\)= \(\frac{1}{90}\)
Tính S=\(\frac{a}{b+c}\)+\(\frac{b}{c+a}\)+\(\frac{c}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(3+S=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{c+a}\right)+\left(1+\frac{c}{a+b}\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(=2007.\frac{1}{90}=\frac{223}{10}\Rightarrow S=\frac{223}{10}-3=\frac{193}{10}\)
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=>S+3=\frac{a}{b+c}+\frac{b+c}{b+c}+\frac{b}{c+a}+\frac{c+a}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{c}{a+b}\right)\)
\(=2007.\frac{1}{90}=\frac{223}{10}\)
\(=>S=\frac{223}{10}-\frac{30}{10}=\frac{193}{10}\)
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2017\cdot\frac{1}{90}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2017}{90}\)
\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2017}{90}\)
\(\Rightarrow A+3=\frac{2017}{90}\)
\(\Rightarrow S=\frac{2017}{90}-3=\frac{1747}{90}\)
từ giả thiết, ta có
\(\frac{1}{2017-a}+\frac{1}{2017-b}+\frac{1}{2017-c}=\frac{1}{90}\)
Mà \(S=\frac{a}{2017-a}+\frac{b}{2017-b}+\frac{c}{2017-c}=-3+\frac{2017}{2017-a}+\frac{2017}{2017-b}+\frac{2017}{2017-c}\)
=-3+\(2017\left(\frac{1}{2017-a}+\frac{1}{2017-b}+\frac{1}{2017-c}\right)=-3+\frac{2017}{90}=\frac{1747}{90}\)
vậy ...
^_^
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a+c}{a+c}+\frac{a+b}{a+b}\right)\)
\(\Rightarrow S=2007.\frac{1}{90}-3=\frac{2007-270}{90}\)
=> (a+b+c).(1/a+b + 1/b+c +1/c+a) = 2017/90
=> a+b+c/a+b + a+b+c/b+c + a+b+c/c+a = 2017/90
=> 1 + c/a+b + 1 + a/b+c + 1 + b/c+a = 2017/90
=> a/b+c + b/c+a +c/a+b = 2017/90 - 3 = 1747/90
Vậy S = 1747/90
Tk mk nha
do \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{90}.\)
nên \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=\)\(\left(a+b+c\right)\times\frac{1}{90}.\)(nhân cả 2 vế với a+b+c)
=> \(\frac{\left(a+b+c\right)}{a+b}+\frac{\left(a+b+c\right)}{b+c}+\frac{\left(a+b+c\right)}{c+a}\)= \(\frac{\left(a+b+c\right)}{90}\)
=> \(\frac{a+b}{a+b}+\frac{c}{a+c}+\frac{b+c}{b+c}+\frac{a}{b+c}\)\(+\frac{c+a}{c+a}+\frac{b}{c+a}=\frac{2007}{90}\)(do a+b+c=2007)
=> 3+\(\frac{c}{a+c}+\frac{a}{b+c}+\frac{b}{c+a}=\frac{2007}{90}\)
=> \(\frac{c}{a+c}+\frac{a}{b+c}+\frac{b}{c+a}=\frac{2007}{90}-3=\frac{193}{10}\)\(=19,3\)
Vậy S=19,3
cô tớ chữa cho đấy
chắc chắn 1000000000000%
chúc cậu học tốt
Ra bằng \(S=\frac{2007}{90}\)bạn Monkey( quỳnh chi ^_^)