K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác ABIC có 

M là trung điểm của AI

M là trung điểm của BC

Do đó: ABIC là hình bình hành

Suy ra: CI=AB(1)

Xét ΔABE có 

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABE cân tại B

=>BA=BE(2)

Từ (1) và (2) suy ra BE=CI

a) Xét ΔABM và ΔFCM có 

AM=FM(gt)

\(\widehat{AMB}=\widehat{FMC}\)(hai góc đối đỉnh)

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔFCM(c-g-c)

b) Xét ΔBMF và ΔCMA có 

BM=CM(M là trung điểm của BC)

\(\widehat{BMF}=\widehat{CMA}\)(hai góc đối đỉnh)

FM=AM(gt)

Do đó: ΔBMF=ΔCMA(c-g-c)

nên \(\widehat{FBM}=\widehat{ACM}\)(hai góc tương ứng)

mà \(\widehat{FBM}\) và \(\widehat{ACM}\) là hai góc ở vị trí so le trong

nên BF//AC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: ΔABM=ΔFCM(cmt)

nên \(\widehat{ABM}=\widehat{FCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{FCM}\) là hai góc ở vị trí so le trong

nên AB//CF(Dấu hiệu nhận biết hai đường thẳng song song)

9 tháng 8 2015

a) Tam giác ADE có HE=HA; MD=MA nên HM là đường trung bình của tam giác ADE

=> HM//ED

mà HM vuông góc với AE nên ED cũng vuông góc với AE.

Vậy ΔAED vuông tại E.

b) Xét ΔABM và ΔDCM có:

       MA=MD(gt)

Góc AMB=DMC(đối đỉnh)

       MB=MC(gt)

Vậy ΔABM=ΔDCM(c.g.c).

=> Góc ABM = DCM( hai góc tương ứng) (1)

ΔABE có BH vừa là đường cao vừa là trung tuyến nên ΔABE cân tại B, nên BH cũng là đường cao

=> Góc ABM=EBH (2)

Từ (1) và (2) suy ra góc EBH = DCM hay EBC = DCB.

Tứ giác BCDE có ED//BC( do ED//HM đó) nên BCDE là hình thang.

Hình thang BDCE có thêm hai góc kề đáy EBC=DCB nên BDCE là hình thang cân.

26 tháng 5 2016

Bạn tự vẽ hình nhaleuleu

a, Ta có: AM là đường trung tuyến

=> MB=MC

* Xét tam giác AMB và tam giác IMC có:

MA=MI ( theo gt)

AMB=CMI (đối đỉnh)

MB=MC( Chứng minh trên)

=>Tam giác AMB= tam giác IMC (c.g.c)

=> góc BAM=góc CIM ( góc tương ứng)

Mà hai góc này ở vị trí so le trong nên 

=> AB//CI (ĐPCM)

* Xét tam giác ABH và tam giác EBH có:

góc AHB= góc EHB = 90 độ 

AH= EH ( gt)

BH chung

=> Tam giác ABH= tam giác EBH ( hai cạnh góc vuông)

=> AB = BE ( Cạnh tương ứng) 

Ta lại có: Vì tam giác AMB= tam giác IMC 

=> AB=IC( cạnh tương ứng)

Mà AB= BE và AB=IC 

Theo tính chất bắc cầu thì BE=IC

=> BE=IC( ĐPCM)

#\(N\)

`a,` Xét Tam giác `AMB` và Tam giác `CME` có:

`AM = ME (g``t)`

\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`

`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`

`-> AB = CE (2` cạnh tương ứng `)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{BHA}=\widehat{BHD}=90^0\) 

`BH` chung

`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`

`=> AB = BD (2` cạnh tương ứng `)`

Mà `AB = CE -> BD = CE`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`HA = HD (g``t)`

\(\widehat{AHM}=\widehat{DHM}=90^0\)  

`HM` chung

`=>` Tam giác `AMH =` Tam giác `DMH (c-g-c)`

`=> AM = DM (2` cạnh tương ứng `)`

Xét Tam giác `AMD` có: `AM = DM`

`->` Tam giác `AMD` là tam giác cân.

 

loading...

Mình bổ sung thêm hình ạ ._. nãy k sửa kịp á.