K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

Chào người đẹp

Từ M kẻ MP vuông góc với AC là ra

31 tháng 5 2017

A B C H D E F

Ta có: AD=HE => AD+DH=HE+DH => AH=DE => AH2=DE2;  AD=HE => AD2=HE2.

AH vuông góc BC => Tam giác BHE vuông tại H => BE2=BH2+HE2 (Định lí Pytago) (1)

AH vuông góc BC, DF//BC => DF vuông góc với AH => Tam giác EDF vuông tại D => EF2=DE2+DF2 (Pytago) (2)

Từ (1) và (2) => BE2+EF2=BH2+HE2+DE2+DF2 (3)

Thay AH2=DE2; AD2=HE2 (cmt) vào (3), ta được: BE2+EF2=BH2+AD2+AH2+DF2  => BE2+EF2=(BH2+AH2)+(AD2+DF2)

=> BE2+EF2=AB2+AF2 (Áp dụng định lí Pytago với 2 cặp cạnh)

Xét tam giác ABF có: ^A=900 => AB2+AF2=BF2, thay vào biểu thức trên ta có: BE2+EF2=BF2.

=> Tam giác BEF có: BE2+EF2=BF2 => Tam giác BEF vuông tại E (Định lí Pytago đảo) (đpcm). 

1 tháng 1 2024

Đề sai rồi em!

10 tháng 4 2020

Gọi E là giao của AC và PB, F là giao của AB và PC

Qua P kẻ đường thẳng d song song với BC

Giả sử E và F lần luợt là giao của AC và AB với d

Ta có: \(\frac{BM}{PF'}=\frac{CM}{PE'}\left(=\frac{AM}{PA}\right)\), mà \(BM=CM\) => PE'=PF'

Do đó \(\frac{PE}{EB}=\frac{PE'}{BC}=\frac{PF'}{BC}=\frac{PF}{FC}\) => EF//BC => \(\frac{EA}{AC}=\frac{FA}{AB}\)

Gọi I là giao của HQ và AB; K là giao của HR và AC

Áp dụng định lý Talet có: \(\frac{QI}{IH}=\frac{EA}{AC}=\frac{FA}{AB}=\frac{RK}{KH}\), do đó: IK//QR (1)

\(\widehat{MAC}=\widehat{AIK}\) nên PM _|_ IK

Từ (1) => PM _|_ QR hay PA _|_ QR

Gọi S là giao RA và PB

\(\frac{HI}{HK}=\frac{HQ}{HR}=\frac{HB}{HA}\Rightarrow\frac{HB}{HQ}=\frac{HA}{HR};\widehat{BHQ}=\widehat{AHR}\)

có tam giác BHQ đồng dạng với tam giác AHE 

=> \(\widehat{QBH}=\widehat{RAH}\) => Tứ giác BHAS nội tiếp

Vậy \(\widehat{ASB\:}=90^o\) hay RS _|_ PQ (2)

Từ (1) (2) => A là trực tâm tam giác PQR

12 tháng 5 2019

a, b, c HS tự làm

d, Gợi ý: G' ÎOI mà  I G ' I O = 1 3 => G' thuộc (G'; 1 3 R)

25 tháng 8 2020

\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)

\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)

Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)

26 tháng 8 2020

(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.

=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2                                                                                                                                                                                   =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2                                                                                                                                                                                         2                          2                                                                                                                                                       Tương Tự:(1-c+c2) (1-d+d2> 1+c2d2                                                                                                                                                                                                                                                         2