K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Có tất cả bao nhiêu giá trị của m nguyên để hàm số:y = x8 + (m - 2)x5 - (m2 - 4)x4 + 1 đạt cực tiểu tại x = 0?(Mã đề 123, đề thi năm 2018).Bài giải:Với đề thi THPT quốc gia môn Toán, đây là một trong những câu khó. Không nhiều các bạn học sinh giải được đề toán trên. Đây là một hàm số bậc 8, hoàn toàn khác với những hàm số thông dụng được học trên lớp, để giải được bài...
Đọc tiếp

Bài 1: Có tất cả bao nhiêu giá trị của m nguyên để hàm số:

y = x8 + (m - 2)x5 - (m2 - 4)x4 + 1 đạt cực tiểu tại x = 0?

(Mã đề 123, đề thi năm 2018).

Bài giải:

Với đề thi THPT quốc gia môn Toán, đây là một trong những câu khó. Không nhiều các bạn học sinh giải được đề toán trên. Đây là một hàm số bậc 8, hoàn toàn khác với những hàm số thông dụng được học trên lớp, để giải được bài này, các bạn cần phải sử dụng kiến thức từ định nghĩa và tính chất của cực trị hàm số bất kì. Ta có:

y' = 8x7 + 5(m - 2)x4 - 4(m2 - 4)x3 + 1

Hàm đạt cực tiểu tại x = 0 thì y'(x) = 0 và y'(x) đổi dấu từ âm sang dương khi x chạy qua điểm 0. Từ đó ta tương đương với số hạng chứa x có lũy thừa thấp nhất có hệ số khác 0 trong biểu thức y’ là lũy thừa bậc lẻ, hệ số dương.

Có nghĩa là :

–4(m2 - 4) > 0  và m - 2 = m² – 4 = 0

⇔ –2 < m < 2 hoặc m = 2

⇒ m = {-1, 0, 1, 2 }

Tóm lại ta nhận được 4 giá trị của m là số nguyên của m để hàm số đạt cực tiểu tại x = 0.

Bạn đọc có thể nhận thấy không hề đơn giản chút nào để giải được bài tập tìm cực trị hàm số trên. Vì thế chúng ta hãy cùng luyện tập thật nhiều và chắc các dạng bài cực trị trên. Từ đó với kĩ năng và kiến thức trên các em mới giải nhanh được câu hỏi tương tự.

giúp mik vs

0
9 tháng 8 2023

\(y=x^8+\left(m-2\right)x^5-4\left(m^2-4\right)+1\)

Tập xác định \(D=ℝ\)

\(y'=8x^7+5\left(m-2\right)x^4\)

\(y''=56x^6+20\left(m-2\right)x^3\)

Để hàm số đạt cực tiểu tại \(x=0\)

\(\left\{{}\begin{matrix}y'\left(0\right)=0\\y''\left(0\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0m=0\\0m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\forall m\inℝ\\m>0\end{matrix}\right.\) \(\Leftrightarrow m>0\)

Vậy \(m>0\) hàm số trên đạt cực tiểu tại \(x=0\)

9 tháng 8 2023

Với đề thi THPT quốc gia môn Toán, đây là một trong những câu khó. Không nhiều các bạn học sinh giải được đề toán trên. Đây là một hàm số bậc 8, hoàn toàn khác với những hàm số thông dụng được học trên lớp, để giải được bài này, các bạn cần phải sử dụng kiến thức từ định nghĩa và tính chất của cực trị hàm số bất kì. Ta có:

y" = 8x7 + 5(m - 2)x4 - 4(m2 - 4)x3 + 1

Hàm đạt cực tiểu tại x = 0 thì y"(x) = 0 và y"(x) đổi dấu từ âm sang dương khi x chạy qua điểm 0. Từ đó ta tương đương với số hạng chứa x có lũy thừa thấp nhất có hệ số khác 0 trong biểu thức y’ là lũy thừa bậc lẻ, hệ số dương.

Có nghĩa là :

–4(m2 - 4) > 0 và m - 2 = m² – 4 = 0

⇔ –2 Bài 2 - Mã đề 124 đề thi môn Toán THPT Quốc gia 2017

Dưới đây là hàm số y = f(x) được thể hiện trong bình với bảng biến thiên:

 

*

 

Tìm giá trị cực tiểu, cực đại của hàm số đã cho.

Bài giải:

Theo như bảng biến thiên các em học sinh nhận thấy được cực tiểu là 0 và giá trị cực đại của hàm số là 3.

Nhiều câu hỏi cho sẵn bảng biến thiên hay hình vẽ đồ thị hàm số sẽ xuất hiện trong đề thi. Chúng ta có thể vận dụng chính những dữ liệu này để có cho mình được đáp án đúng một cách nhanh chóng.

Đây nhé bro:))!

29 tháng 10 2019

Đáp án D

14 tháng 12 2017

Chọn C

19 tháng 2 2021

Chọn A

2 tháng 1 2019

+ Ta có: 

Ta xét các trường hợp sau

+  Nếu m2- 4= 0 hay m= ± 2

Khi m= 2 thì y’ = 8x7 nên x=0 là điểm cực tiểu.

Khi m=y’ = x4( 8x4- 20 ) khi đó x= 0 không là điểm cực tiểu.

+  Nếu m ≠  ± 2 .Khi đó ta có

Số cực trị của hàm y= x8+ (m-2) x5- ( m2- 4) x4+ 1  bằng số cực trị của hàm g’( x)

+Nếu x= 0 là điểm cực tiểu thì g’’ (0) >0.

Khi đó -4( m2- 4) > 0 hay -2< m< 2

Mà m nguyên nên m= -1; 0; 1

Kết hợp cả 3 trường hợp có 4 giá trị nguyên của m và tổng của chúng là:

2+ ( -1) +0+ 1=2

Chọn  D.

6 tháng 2 2017

TXĐ: D = R

y’ = 3 x 2 – 4x + m; y’ = 0 ⇔ 3 x 2  – 4x + m = 0

Phương trình trên có hai nghiệm phân biệt khi:

∆ ’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)

Hàm số có cực trị tại x = 1 thì :

y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )

Mặt khác, vì:

y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0

cho nên tại x = 1, hàm số đạt cực tiểu.

Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1

18 tháng 12 2019

TXĐ: D = R

y’ = 3 x 2  – 4x + m; y’ = 0 ⇔ 3 x 2  – 4x + m = 0

Phương trình trên có hai nghiệm phân biệt khi:

∆’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)

Hàm số có cực trị tại x = 1 thì :

y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )

Mặt khác, vì:

y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0

cho nên tại x = 1, hàm số đạt cực tiểu.

Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1

3 tháng 1 2017

Đáp án C.

Phương pháp: 

Xác suất của biến cố A:

P A = n A n Ω .  

Cách giải:

Số phần tử của không gian mẫu : n Ω = 24 4  

A: “Bình và Lan có chung đúng một mã đề thi”

- Chọn một môn chung mã đề thi có : 2 cách

- Chọn một mã chung có: 24 cách

- Chọn mã môn còn lại: 

  +) Cho Bình: 24 cách

  +) Cho Lan: 23 cách

Xác suất:

P A = n A n Ω = 2.24.24.23 24 4 = 23 288  

30 tháng 4 2022

Tham khảo

+ Ta có: 

Ta xét các trường hợp sau

+  Nếu m2- 4= 0 hay m= ± 2

Khi m = 2 thì y’ = 8x7 nên x=0 là điểm cực tiểu.

Khi m = -2 thì y’ = x4( 8x4- 20 ) khi đó x= 0 không là điểm cực tiểu.

+  Nếu m ≠  ± 2 .Khi đó ta có

Số cực trị của hàm y = x8+ (m-2) x5- ( m2- 4) x4+ 1  bằng số cực trị của hàm g’( x)

+) Nếu x = 0 là điểm cực tiểu thì g’’ (0) > 0.

Khi đó: -4( m2 - 4) > 0 hay -2 < m < 2

Mà m nguyên nên m= -1; 0; 1

Kết hợp cả 2 trường hợp có 4 giá trị nguyên của m và tổng của chúng là:

2 + ( -1) + 0 + 1 = 2

8 tháng 11 2018

Chọn C.

Hai bạn Bình và Lan cùng 1 mã đề, cùng 1 môn thi (Toán hoặc TA) có 24 cách.

Môn còn lại khác nhau ⇒  có 24.23 cách chọn.

Do đó, có 2.24.24.23 = 26496 cách để Bình, Lan có chung mã đề.

Vậy xác suất cần tính là P = 26496 24 2 . 24 2 = 23 288 .