K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

Bài 1:

a)\(Q=2x-\sqrt{x^2+2x+1}=2x-\sqrt{\left(x+1\right)^2}=2x-\left|x+1\right|\)

b)Tại x=7 thay vào Q ta được:

\(Q=2.7-\left|7+1\right|=14-8=6\)

Bài 2:

\(\sqrt{x^2-6x}+7x=13\)\(\Leftrightarrow\sqrt{x^2-6x}=13-7x\)

\(\Leftrightarrow\left\{{}\begin{matrix}13-7x\ge0\\x^2-6x=\left(13-7x\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{13}{7}\\0=48x^2-85x+169\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{13}{7}\\\Delta=\left(-85\right)^2-4.48.169=-25223< 0\end{matrix}\right.\)

\(\Rightarrow x\in\varnothing\)

Vậy pt vô nghiệm.

6 tháng 7 2021

em cảm mơn nhìu ạ yeu

4 tháng 7 2021

\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)

\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)

\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)

\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)

4 tháng 7 2021

B1.

Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)

            \(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

           \(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)

16 tháng 7 2021

a) \(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,9\right)\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) \(\sqrt{x}=\sqrt{6+4\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}=2+\sqrt{2}\)

\(\Rightarrow Q=\dfrac{2+\sqrt{2}+1}{2+\sqrt{2}-3}=\dfrac{3+\sqrt{2}}{\sqrt{2}-1}=\dfrac{\left(3+\sqrt{2}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(=4\sqrt{2}+5\)

c) \(Q=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

Để \(Q\in Z\Rightarrow4⋮\sqrt{x}-3\Rightarrow\sqrt{x}-3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{4;5;7;2;1\right\}\Rightarrow x\in\left\{16;25;49;4;1\right\}\)

a) Ta có: \(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

a: \(Q=\dfrac{x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

b: \(Q=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}+\sqrt{2}-1+1}=\dfrac{2\sqrt{2}-1}{7}\)

a: \(Q=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

b: Khi x=4+2căn 3 thì \(Q=\dfrac{\sqrt{3}+1-2}{\sqrt{3}+1+2}=\dfrac{-3+2\sqrt{3}}{3}\)

c: Q=3

=>3căn x+6=căn x-2

=>2căn x=-8(loại)

d: Q>1/2

=>Q-1/2>0

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{1}{2}>0\)

=>2căn x-4-căn x-2>0

=>căn x>6

=>x>36

d: Q nguyên

=>căn x+2-4 chia hết cho căn x+2

=>căn x+2 thuộc Ư(-4)

=>căn x+2 thuộc {2;4}

=>x=0 hoặc x=4(nhận)

8 tháng 10 2017

1.

a. ĐKXĐ : x lớn hơn hoặc bằng 1/2 

b. A\(\sqrt{2}\)\(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)

\(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)

=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)

Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)

\(\Rightarrow A=2\)

Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)

Do đó : A= \(\sqrt{4x-2}\)

Vậy ............

8 tháng 10 2017

2. 

a. \(x\ge2\)hoặc x<0

b. A= \(2\sqrt{x^2-2x}\)

c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)

\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)

Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)

Vậy...........

13 tháng 8 2020

c) Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9

A = \(-\frac{1}{\sqrt{x}-3}\) => -2A = \(\frac{2}{\sqrt{x}-3}\)

Để -2A thuộc Z <=> \(2⋮\sqrt{x}-3\)

<=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Lập bảng: 

\(\sqrt{x}-3\)    1    -1   2   -2
    x     8   4 (ktm) 25 1

Vậy ....

a: ĐKXĐ: x>0; x<>1

\(Q=\dfrac{x+\sqrt{x}+\sqrt{x}}{x-1}:\dfrac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-1}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+x}\)

\(=\dfrac{x}{\sqrt{x}-1}\)

b: Q>2

=>Q-2>0

=>\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)

=>căn x-1>0

=>x>1

29 tháng 7 2023

a) ĐK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(Q=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{x+\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x\left(\sqrt{x}+1\right)}{x+2\sqrt{x}}\)

\(=\dfrac{x}{\sqrt{x}-1}\)

b) Q>2 <=> \(\dfrac{x}{\sqrt{x}-1}>2\Leftrightarrow x>2\sqrt{x}-2\)

\(\Leftrightarrow x-2\sqrt{x}+2>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+1>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1\le0\\\sqrt{x}-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le1\end{matrix}\right.\)

KL:.....

25 tháng 10 2020

a) Ta có:

\(A=2x+\sqrt{x^2-6x+9}\)

\(A=2x+\sqrt{\left(x-3\right)^2}\)

\(A=2x+\left|x-3\right|\)

Nếu \(x< 3\) thì: \(A=2x+3-x=x+3\)

Nếu \(x\ge3\) thì: \(A=2x+x-3=3x-3\)

b) Ta có: \(\left|x\right|=5\Leftrightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)

Nếu x = 5: \(A=3\cdot5-3=12\)

Nếu x = -5: \(A=-5+3=-2\)

c) Ta có: \(A=2\Leftrightarrow\orbr{\begin{cases}x+3=2\\3x-3=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\left(ktm\right)\end{cases}}\)

Vậy x = -1

25 tháng 10 2020

a) \(A=2x+\sqrt{x^2-6x+9}\)

\(=2x+\sqrt{\left(x-3\right)^2}\)

\(=2x+\left|x-3\right|\)

Với x ≥ 3 => A = 2x + x - 3 = 3x - 3

Với x < 3 => A = 2x + 3 - x = x + 3

b) | x | = 5 => x = ±5

Với x = 5 > 3 => A = 3.5 - 3 = 12

Với x = -5 < 3 => A = -5 + 3 = -2

c) A = 2 

⇔ 2x + | x - 3 | = 2

⇔ | x - 3 | = 2 - 2x (*)

Với x ≥ 3 

(*) ⇔ x - 3 = 2 - 2x

     ⇔ x + 3x = 2 + 3

     ⇔ 4x = 5

     ⇔ x = 5/4 ( ktm )

Với x < 3

(*) ⇔ 3 - x = 2 - 2x

     ⇔ -x + 2x = 2 - 3

     ⇔ x = -1 ( tm )

Vậy x = -1

4 tháng 7 2021

a, Ta có : \(Q=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2}{x-1}\)

\(=\dfrac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}=\dfrac{x-\sqrt{x}}{x-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

b, - Thay x = 9 vào Q ta được : Q = 0,75

Vậy ...