K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

Ta có : \(\left(x^n-3\right)^2=\left(x^n\right)^2-6x^n+9=x^{2n}-6x^n+9\)

5 tháng 7 2021

Đề bài là gì vậy???

2 tháng 9 2019

Chọn A.

Ta có: 

Do đó: 

Ta chứng minh dãy (yn)  tăng.

Ta có: 

Ta chứng minh dãy (yn)  bị chặn.

Trước hết ta chứng minh: xn 4(n – 1) (1)

 * Với n = 2, ta có: x2 = 4x1 = 4 nên (1) đúng với n = 2

 * Giả sử (1) đúng với n, tức là: xn 4(n – 1), ta có

Nên (1) đúng với n + 1. Theo nguyên lí quy nạp ta suy ra (1) đúng

Ta có: 

Vậy bài toán được chứng minh.

3 tháng 10 2017

Giải bài tập Toán 11 | Giải Toán lớp 11 Giải bài tập Toán 11 | Giải Toán lớp 11

8 tháng 9 2023

\(u_n:\left\{{}\begin{matrix}u_1=0;u_1=1\\u_{n+2}=\dfrac{u_{n+1}}{u_{n+1}+u_{n+2}}\end{matrix}\right.\)

Giả sử \(limu_n=a\Rightarrow limu_{n+1}=limu_{n+2}=a\)

\(\Rightarrow a=\dfrac{a}{a+a}=\dfrac{a}{2a}=\dfrac{1}{2}\)

Nên dãy \(u_n\) có giới hạn hữu hạn

vì \(\left\{{}\begin{matrix}u_1=0\\u_2=1>0\end{matrix}\right.\)

\(\Rightarrow u_{n+2}=\dfrac{u_{n+1}}{u_{n+1}+u_{n+2}}>0,\forall n\inℕ\)

\(\Rightarrow a>0\)

\(\Rightarrow limu_n=a=\dfrac{1}{2}\)

28 tháng 9 2019

31 tháng 8 2021

\(x^{n+3}+x^n=x^n.x^3+x^n=x^n\left(x^3+1\right)=x^n\left(x+1\right)\left(x^2-x+1\right)\)

31 tháng 8 2021

\(x^{n+3}+x^n=x^n\left(x^3+1\right)=x^n\left(x+1\right)\left(x^2-x+1\right)\)

NV
1 tháng 3 2021

Đề bài sai, dãy tăng và không hề bị chặn trên nên không tồn tại giới hạn

23 tháng 4 2019

Bài 1 : 

8x - 0,4 = 7,8*x + 402

8x - 7,8*x = 402 + 0,4

0,2*x = 402,04

x= 402,04 : 0,2

x = 2012

23 tháng 4 2019

Bài 2

Theo bài ra , số học sinh lớp 6A bằng 1/2 tổng số học sinh hai lớp 6B và 6C

=> Số học sinh lớp 6A bằng 1/3 số học sinh của cả 3 lớp

Số học sinh lớp 6A là :

  120  x  1/3  =  40 học sinh

Tổng số học sinh lớp 6B và 6C là :

  120  -  40  =  80 học sinh

Số học sinh lớp 6B là :

  ( 80 - 6 ) : 2 = 37 học sinh

Số học sinh lớp 6C là :

  37  +  6  =  43 học sinh