a) tại sao tổng 22 + 23 + 24 + 25 chia hết cho 3?/
b) Tại sao tổng 420 + 421 + 422 + 423 chia hết cho 5?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 19.4
a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)
a: \(=2^2\left(1+2\right)+2^4\left(1+2\right)=3\left(2^2+2^4\right)⋮3\)
b: \(=4^{20}\left(1+4\right)+4^{22}\left(1+4\right)=5\left(4^{20}+4^{22}\right)⋮5\)
c: \(A=\left(1+4+4^2\right)+...+4^{96}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{96}\right)⋮21\)
d: \(B=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{35}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{35}\right)⋮8\)
\(B=7\left(1+7+7^2\right)+...+7^{34}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{34}\right)\) chia hếtcho 3 và 19
Ta có: \(2^2+2^3+2^4+2^5\)
\(=\left(2^2+2^3\right)+\left(2^4+2^5\right)\)
\(=12+2^2.\left(2^2+2^3\right)\)
\(=12+2^2.12\)
\(=12.\left(1+2^2\right)\)
Vì \(12⋮3\) nên \(12.\left(1+2^2\right)⋮3\)
Vậy \(2^2+2^3+2^4+2^5⋮3\)
Ta có:
A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)
= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)
= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3
= 3 . (2 + 23 + 25 + 27 + 29)
Vậy A ⋮ 3
\(4^{20}+4^{21}+4^{22}+4^{23}=4^{20}\left(1+4+4^2+4^3\right)=4^{20}\cdot85⋮5\left(85⋮5\right)\)
A = 2 + 22 + 23 + ... + 210 (10 số hạng)
= (2 + 22) + (23 + 24) + ... + (29 + 210) (5 cặp số)
= 2(1 + 2) + 23(1 + 2) + ... + 29(1 + 2)
= (1 + 2)(2 + 23 + ... + 29)
= 3(2 + 23 + ... + 29) \(⋮\)3
=> A \(⋮\)3
Ta nhận thấy: 1 + 9 + 2 + 5 + 3 + 2 + 4 + 6 + 5 + 8 = 45 mà 45 chia hết cho 3.
Vậy tổng trên chia hết cho 3 vì tổng các chữ số của các số hàng của tổng chia hết cho 3.
a) \(2^2+2^3+2^4+2^5\)
\(=\left(2^2+2^3\right)+\left(2^4+2^5\right)\)
\(=2^2\left(1+2\right)+2^4\left(1+2\right)\)
\(=2^2.3+2^4.3\)
\(=3\left(2^2+2^4\right)⋮3\)
b) \(4^{20}+4^{21}+4^{22}+4^{23}\)
\(=\left(4^{20}+4^{21}\right)+\left(4^{22}+4^{23}\right)\)
\(=4^{20}\left(1+4\right)+4^{22}\left(1+4\right)\)
\(=4^{20}.5+4^{22}.5\)
\(=5\left(4^{20}+4^{22}\right)⋮5\)
a)
2
2
+
2
3
+
2
4
+
2
5
2
2
+2
3
+2
4
+2
5
=
(
2
2
+
2
3
)
+
(
2
4
+
2
5
)
=(2
2
+2
3
)+(2
4
+2
5
)
=
2
2
(
1
+
2
)
+
2
4
(
1
+
2
)
=2
2
(1+2)+2
4
(1+2)
=
2
2
.
3
+
2
4
.
3
=2
2
.3+2
4
.3
=
3
(
2
2
+
2
4
)
⋮
3
=3(2
2
+2
4
)⋮3
b)
4
20
+
4
21
+
4
22
+
4
23
4
20
+4
21
+4
22
+4
23
=
(
4
20
+
4
21
)
+
(
4
22
+
4
23
)
=(4
20
+4
21
)+(4
22
+4
23
)
=
4
20
(
1
+
4
)
+
4
22
(
1
+
4
)
=4
20
(1+4)+4
22
(1+4)
=
4
20
.
5
+
4
22
.
5
=4
20
.5+4
22
.5
=
5
(
4
20
+
4
22
)
⋮
5
=5(4
20
+4
22
)⋮5