A=7/3+11/32+15/35+...+2019/3504, A< 9/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+\frac{19}{3^4}+...+\frac{2015}{3^{503}}+\frac{2019}{3^{504}}\)
3A=\(7+\frac{11}{3}+\frac{15}{3^2}+\frac{19}{3^3}+...+\frac{2015}{3^{502}}+\frac{2019}{5^{503}}\)
=> 3A-A=(\(7+\frac{11}{3}+\frac{15}{3^2}+\frac{19}{3^3}+...+\frac{2015}{3^{502}}+\frac{2019}{5^{503}}\))-(\(\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+\frac{19}{3^4}+...+\frac{2015}{3^{503}}+\frac{2019}{3^{504}}\))
2A=\(7+\left(\frac{11}{3}-\frac{7}{3}\right)+\left(\frac{15}{3^2}-\frac{11}{3^2}\right)+\left(\frac{19}{3^3}-\frac{15}{3^3}\right)+...+\left(\frac{2019}{3^{503}}-\frac{2015}{3^{503}}\right)-\frac{2019}{3^{504}}\)
2A=\(7+\frac{4}{3}+\frac{4}{3^2}+\frac{4}{3^3}+...+\frac{4}{3^{503}}-\frac{2019}{3^{504}}\)
=> A=\(\frac{7}{2}+2\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{503}}\right)-\frac{2019}{2.3^{504}}\)
Em làm tiếp Xét
B=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{503}}\)
3B=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{502}}\)
=> 3B-B=\(1-\frac{1}{3^{503}}\)
=> B=\(\frac{1}{2}-\frac{1}{2.3^{503}}\)
=> A=\(\frac{7}{2}+2\left(\frac{1}{2}-\frac{1}{2.3^{503}}\right)-\frac{2019}{2.3^{504}}=\frac{9}{2}-\frac{1}{3^{503}}-\frac{2019}{2.3^{504}}< \frac{9}{2}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 1:
5; (-23) + 105
= 105 - 23
= 82
6; 78 + (-123)
= 78 - 123
= - (123 - 78)
= - 45
bài1
1)2763 + 152 = 2915
2)-7 +(-14)
=-(14 +7)
=-21
a: \(=\left(15-6-\dfrac{13}{18}\right):\dfrac{298}{27}-\dfrac{17}{8}:\dfrac{51}{40}\)
\(=\dfrac{149}{18}\cdot\dfrac{27}{298}-\dfrac{5}{3}=\dfrac{3}{2}-\dfrac{5}{3}=\dfrac{9-10}{6}=\dfrac{-1}{6}\)
b: \(=\dfrac{-16}{5}\cdot\dfrac{-15}{64}+\dfrac{-22}{15}:\dfrac{11}{2}\)
\(=\dfrac{3}{4}-\dfrac{4}{15}=\dfrac{29}{60}\)
c: \(=\dfrac{-7}{9}\left(\dfrac{4}{11}+\dfrac{7}{11}\right)+5+\dfrac{7}{9}=\dfrac{-7}{9}+\dfrac{7}{9}+5=5\)
d: \(=\dfrac{1}{2}\cdot\dfrac{4}{3}\cdot10\cdot\dfrac{1}{5}\cdot\dfrac{3}{4}=1\)
e: \(=\dfrac{4}{25}+\dfrac{11}{2}\cdot\dfrac{5}{2}+\dfrac{-23}{4}=\dfrac{204}{25}\)
Ta có : \(A=\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+...+\frac{2019}{3^{504}}\)
=> 3A = \(7+\frac{11}{3}+\frac{15}{3^2}+...+\frac{2019}{3^{303}}\)
=> 3A - A = \(7+\frac{11}{3}+\frac{15}{3^2}+...+\frac{2019}{3^{303}}-\left(\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+...+\frac{2019}{3^{504}}\right)\)
<=> 2A = \(7+\frac{4}{3}+\frac{4}{3^2}+\frac{4}{3^3}+...+\frac{4}{3^{503}}-\frac{2019}{3^{504}}\)
= \(7+4.\left(\frac{1-\frac{1}{3^{503}}}{2}\right)-\frac{2019}{3^{504}}\)
\(=7+2-\frac{2}{3^{503}}-\frac{2019}{2^{504}}=9-\frac{2}{3^{503}}-\frac{2013}{3^{504}}\)
=> A = \(\frac{9}{2}-\frac{1}{3^{503}}-\frac{2013}{3^{504}.2}< \frac{9}{2}\)(đpcm)