64.4^x - ^1 = 45
giải giúp mình với gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)
\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)
d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(\dfrac{1}{4}+\dfrac{x}{12}=\dfrac{8}{12}\)
\(\dfrac{3}{12}+\dfrac{x}{12}=\dfrac{8}{12}\)
\(\dfrac{3+x}{12}=\dfrac{8}{12}\)
\(\dfrac{x+3}{12}=\dfrac{8}{12}\)
\(=\)\(\dfrac{5}{12}\)
Vậy \(x=5\).
\(=\left(1-x\right)\left(6a+2a^2\right)=2a\left(3+2a\right)\left(1-x\right)\\ 2,=\left(x-5\right)\left(x-3-2\right)=\left(x-5\right)^2\)
2(1-2x)-5=3(x+2)
=>\(2-4x-5=3x+6\)
=>\(-4x-3=3x+6\)
=>\(-7x=9\)
=>\(x=-\dfrac{9}{7}\)
\(\left(3x+\dfrac{3}{5}\right)\left(\left|x\right|-\dfrac{1}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{3}{5}=0\\\left|x\right|=\dfrac{1}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=\dfrac{1}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{5};\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
⇒\(\left\{{}\begin{matrix}3x+\dfrac{3}{5}=0\\\left|x\right|-\dfrac{1}{4}=0\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}3x=0-\dfrac{3}{5}=-\dfrac{3}{5}\\\left|x\right|=0+\dfrac{1}{4}=\dfrac{1}{4}\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}x=-\dfrac{3}{5}:3=-\dfrac{1}{5}\\x=\dfrac{1}{4},-\dfrac{1}{4}\end{matrix}\right.\)
(x + 1) + (2x + 4) + (3x + 7)+...+(12x + 34) = 522
có số số hạng là :
( 34 - 1 ) : 3 + 1 = 12 ( số hạng )
tổng dãy số là :
( 34 + 1 ) x 12 : 2 = 210
( 1x + 2x + 3x + 4x + ..... + 12x ) + 210 = 522
78x + 210 = 522
78x = 312
x = 4
nha bạn
Ta có:1+2+3+....+x=210
=> (x+1).(x-1+1):2=210
=> (x+1).x:2=210
=> (x+1).x=210.2
=> x.(x+1)=420
=> x.(x+1)=22.3.5.7
=> x.(x+1)=20.21
=> x=20
\(1+2+3+...+x=210\Rightarrow\frac{x\cdot\left(x+1\right)}{2}=210\)
\(\Leftrightarrow x^2+x=420\Leftrightarrow x=20\)