\(C=\frac{x^2}{x-1}\)
Tìm giá trị nhỏ nhất của C khi x>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p nhỏ nhất khi x nhỏ nhất
=> x=2 thì nhỏ nhất
thay vào ta có
\(\frac{x^2}{x-1}\)=\(\frac{2^2}{2-1}\)=\(\frac{4}{1}\)=4
vậy nhỏ nhất =4
a, P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\): ( \(\frac{x+1}{x}\)+ \(\frac{1}{x-1}\)- \(\frac{x^2-2}{x\left(x-1\right)}\)
P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\): \(\frac{\left(x+1\right)\left(x-1\right)+x-x^2+2}{x\left(x-1\right)}\)
P= \(\frac{x\left(x+1\right)}{\left(x-1\right)^2}\). \(\frac{x\left(x-1\right)}{x^2-1+x-x^2+2}\)
P= \(\frac{x^2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
P= \(\frac{x^2}{x-1}\)( đkxđ x khác 1)
b, để P=\(\frac{-1}{2}\)\(\Rightarrow\)\(\frac{x^2}{x-1}\)=\(\frac{-1}{2}\)\(\Rightarrow\)1-x = 2x\(^2\)
\(\Rightarrow\)2x\(^2\)+ x-1 = 0\(\Rightarrow\)2x\(^2\)- 2x +x - 1 =0\(\Rightarrow\)(x -1 ) (2x + 1) = 0
\(\Rightarrow\)\(\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\orbr{\begin{cases}x=1\left(ktm\right)\\x=\frac{-1}{2}\left(tm\right)\end{cases}}\)
vậy x= \(\frac{-1}{2}\)
c, tớ chịu thôi mà tớ mỏi tay lắm òi. k cho tớ nhé
a, \(A=\left(\frac{3}{x^3+x}-\frac{4}{x^2+1}\right):\frac{1}{x}\)ĐKXĐ : \(x\ne0\)
\(=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4x}{x\left(x^2+1\right)}\right)x=\frac{3-4x}{x\left(x^2+1\right)}.x\)
\(=\frac{3x-4x^2}{x\left(x^2+1\right)}=\frac{x\left(3-4x\right)}{x\left(x^2+1\right)}=\frac{3-4x}{x^2+1}\)
b, Theo bài ra ta có : \(\left|x-2\right|=2\)
\(\Leftrightarrow x-2=\pm2\Leftrightarrow x=4;0\)
Thay x = 0 vào phân thức trên : \(\frac{3-4.0}{0^2+1}=\frac{3}{1}=3\)( ktm vì ĐKXĐ : x khác 0 )
Thay x =4 vào phân thức trên : \(\frac{3-4.4}{4^2+1}=\frac{3-16}{16+1}=\frac{-13}{17}\)
Vậy \(A=-\frac{13}{17}\)
a) ĐKXĐ : x3 + x \(\ne0\)
=> x(x2 + 1) \(\ne0\)
=> \(\hept{\begin{cases}x\ne0\\x^2+1\ne0\end{cases}}\)
\(A=\left(\frac{3}{x^3+x}-\frac{4}{x^2+1}\right):\frac{1}{x}=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4}{x^2+1}\right):\frac{1}{x}\)
\(=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4x}{x\left(x^2+1\right)}\right).x=\frac{\left(3-4x\right).x}{x\left(x^2+1\right)}=\frac{3-4x}{x^2+1}\)
b) Khi |x - 2| = 2
=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Khi x = 0 => A = \(\frac{3-4.0}{0^2+1}=\frac{-1}{1}=-1\)
Khi x = 4 => A = \(\frac{3-4.4}{4^2+1}=\frac{3-16}{16+1}=\frac{-13}{17}\)
\(a,M=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)
\(=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\right]\)
\(=1:\left[\frac{\left(x^2+2\right)+\left(x+1\right)\left(x-1\right)+\left(-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\left[\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)
\(=1:\frac{x}{x^2+x+1}=\frac{x^2+x+1}{x}\)
ĐK: \(x\ge0\)
\(C=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
a) \(C>9\)
<=> \(1-\frac{3}{\sqrt{x}+1}>9\)
<=> \(\frac{3}{\sqrt{x}+1}< -8< 0\)vô lí
=> Không tồn tại x
b)
\(C< \frac{1}{2}\)
<=> \(1-\frac{3}{\sqrt{x}+1}< \frac{1}{2}\)
<=> \(\frac{3}{\sqrt{x}+1}>\frac{1}{2}\)
<=> \(\frac{\sqrt{x}+1}{3}< 2\)( vì \(\sqrt{x}+1>0\))
<=> \(\sqrt{x}< 5\)
<=> \(0\le x\le25\)( tm đk)
Vậy:...
c)
\(C=1-\frac{3}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0;\forall x\)
khi đó: \(\sqrt{x}+1\ge1\)=> \(\frac{3}{\sqrt{x}+1}\le3\)=> \(C\ge1-3=-2\)
"=" xảy ra <=> x = 0.
Vậy gtnnC = -2 tại x = 0
ĐKXĐ x khác 1
x2/(x-1) = (x^2+x-1-x)/(x-1)=1+(x^2-x)/(x-1)= 1+x
vì x>1 nên để P nhỏ nhất thì x=2 khi đó min P = 3
\(C=\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=x+1+\frac{1}{x-1}=2+x-1+\frac{1}{x-1}\)
\(\ge2+2\sqrt{\left(x-1\right).\frac{1}{x-1}}=2+2=4\)
Dấu \(=\)khi \(x-1=\frac{1}{x-1}\Leftrightarrow x=2\)(vì \(x>1\)).
Vậy \(minC=4\)xảy khi khi \(x=2\).
Ta có: \(C=\frac{x^2}{x-1}\)
\(=\frac{x^2-2x+1}{x-1}+\frac{2x-2}{x-1}+\frac{1}{x-1}\)
\(=\frac{\left(x-1\right)^2}{x-1}+\frac{2\left(x-1\right)}{x-1}+\frac{1}{x-1}\)
\(=x-1+2+\frac{1}{x-1}\)
\(=x-1+\frac{1}{x-1}+2\)
Nhận thấy \(x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right)\frac{1}{x-1}}=2\)
\(\Rightarrow A_{min}=4\)
Dấu "=" xảy ra khi :
\(x-1=\frac{1}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\)
Cre: mạng