K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

ĐKXĐ x khác 1

x2/(x-1) = (x^2+x-1-x)/(x-1)=1+(x^2-x)/(x-1)= 1+x

vì x>1 nên để P nhỏ nhất thì x=2 khi đó min P = 3

26 tháng 3 2018

bấm phân số kiểu j zậy

26 tháng 3 2018

\(P=\frac{x^2-1}{x-1}+\frac{1}{x-1}\)

\(P=x+1+\frac{1}{x-1}\)

\(P=x-1+\frac{1}{x-1}+2\)

\(P\ge2+2=4\)

Min P=4 khi x=2

14 tháng 12 2017

\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)

\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)

\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)

\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)

Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)

14 tháng 12 2017

Gọi k là một giá trị của A ta có: 

\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)

\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)

Ta cần tìm k để PT (*) có nghiệm 
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)

Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)

Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)

Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1

5 tháng 1 2017

\(M=\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(M\ge\left|x-1+3-x\right|=\left|2\right|=2\)

Dấu " = " xảy ra khi \(x-1\ge0;3-x\ge0\)

\(\Rightarrow x\ge1;x\le3\)

\(\Rightarrow1\le x\le3\)

Vậy \(MIN_M=2\) khi \(1\le x\le3\)

30 tháng 7 2018

C=Ix2-x+1I + Ix2-x-2l = l (x-1/2)2+3/4 l + l (x-1/2)2+9/4 l

vì (x-1/2)2 lớn hơn hoặc bằng 0 nên suy ra c lớn hơn hoặc bằng 3/4+9/4=3. vậy min C=3 khi và  chỉ khi x=1/2

14 tháng 7 2017

b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)

Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)

=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)

Dấu  "=" xảy ra khi \(x=\sqrt{2}+1\)

c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)

\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)

Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4