Cho x+y+z=0, x2+y2+z2=10
Tính giá trị biểu thức B=x4+y4+z4-34
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào
\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)
Ta có
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)
Bình phương 2 vế của (1)
\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)
Do x+y+z=0 nên
\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)
\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)
Thay (3) vào (2)
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)
\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)
Bài 3:
\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)
\(=\left(x^2-9\right)\left(x^2-1\right)+15\)
\(=x^4-10x^2+9+15\)
\(=x^4-10x^2+24\)
\(=\left(x^2-4\right)\left(x^2-6\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)
Có x+y+z=0
<=>(x+y+z)+(x+y+z)=0
<=>x+y+z+x+y+z=0
<=>2x+2y+2z=0
<=>(2x+2y+2z).2=0(1)
Tương tự có :(4x+4y+4z).2=0(2)
Từ (1)và(2) có (x2+y2+z2).2=2.(x4+y4+z4)
Chúc bạn học tốt nha
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(\text{a) x^2 + y^2 = (x+y)^2 - 2xy = a^2 - 2b}\)
\(\text{b) x^3 + y^3 = (x+y)^3 - 3xy(x+y) = a^3 - 3ab}\)
\(\text{c) x^4 + y^4 = (x^2+y^2)^2 - 2x^2y^2 = (a^2-2b)^2 - 2b^2 = a^4 - 4a^2b + 2b^2}\)
\(\text{d) x^5 + y^5 = (x^3+y^3)(x^2+y^2) - x^2y^2(x+y) = a^5 - 5a^3b + 5ab^2}\)
Ta có:
\(x^4\ge0\); \(y^4\ge0\) ;\(z^4\ge0\)
\(\Rightarrow x^4+y^4+z^4\ge0\)
Ta cũng có:
\(x^2\ge0\); \(y^2\ge0\) ;\(z^2\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge0\)
Mà: \(x^4>x^2;y^4>x^2;z^4>z^2\)
\(\Rightarrow x^4+y^4+z^4\ge\left(x^2+y^2+z^2\right):3\) (đpcm)
\(\left\{{}\begin{matrix}x-y=4\\xy=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y\left(y+4\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y^2+4y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\\left[{}\begin{matrix}y=-2+\sqrt{5}\\y=-2-\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)
Với \(y=-2+\sqrt{5}\Rightarrow x=2+\sqrt{5}\)
Với \(y=-2-\sqrt{5}\Rightarrow x=2-\sqrt{5}\)
\(\Rightarrow A=x^2+y^2=\left(-2+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2=\left(2-\sqrt{5}\right)^2+\left(-2-\sqrt{5}\right)^2=18\)
\(B=x^3+y^3\Rightarrow\left[{}\begin{matrix}B=\left(2+\sqrt{5}\right)^3+\left(-2+\sqrt{5}\right)^3=34\sqrt{5}\\B=\left(2-\sqrt{5}\right)^3+\left(-2-\sqrt{5}\right)^3=-34\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow C=x^4+y^4=\left(-2+\sqrt{5}\right)^4+\left(2+\sqrt{5}\right)^4=\left(2-\sqrt{5}\right)^4+\left(-2-\sqrt{5}\right)^4=322\)
Ta có : x2 + y2 + z2 = 10
<=> (x2 + y2 + z2)2 = 100
<=> x4 + y4 + z4 + 2x2z2 + 2y2z2 + 2x2y2 = 100
<=> x4 + y4 + z4 + 2[(xz)2 + (yz)2 + (xy)2] = 100 (1)
Lại có x + y + z = 0
<=> (x2 + y2 + z2 + 2xy + 2yz + 2zx = 0
<=> 10 + 2(xy + yz + zx) = 0
<=> xy + yz + zx = -5
<=> (xy + yz + zx)2 = 25
<=> (xy)2 + (yz)2 + (zx)2 + 2xy2z + 2xyz2 + 2x2yz = 25
<=> (xy)2 + (yz)2 + (zx)2 + 2xyz(x + y + z) = 25
<=> (xy)2 + (yz)2 + (zx)2 = 25 (vì x + y + z = 0) (2)
Thay (2) vào (1) => x4 + y4 + z4 + 2.25 = 100
<=> x4 + y4 + z4 = 50
Khi đó B = x4 + y4 + z4 - 34 = 50 - 81 = -29
Ta có : \(\hept{\begin{cases}\left(x+y+z\right)^2=0\\x^2+y^2+z^2=10\end{cases}< =>2\left(xy+yz+zx\right)}=-10< =>xy+yz+zx=-5\)
\(< =>\left(xy+yz+zx\right)^2=25< =>x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)=25\)
\(< =>x^2y^2+y^2z^2+z^2x^2=25\)
Lại có : \(\left(x^2+y^2+z^2\right)^2=100< =>x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)=100\)
\(< =>x^4+y^4+z^4=50\)\(\Rightarrow x^4+y^4+z^4-3^4=50-3^4=-31\)
\(\Rightarrow B=-31\)
mình làm nháp nha bạn , nếu trình bày ra giấy thì phải chặt chẽ hơn