K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

Ta có : x2 + y2 + z2 = 10

<=> (x2 + y2 + z2)2 = 100

<=> x4 + y4 + z4 + 2x2z2 + 2y2z2 + 2x2y2 = 100

<=> x4 + y4 + z4 + 2[(xz)2 + (yz)2 + (xy)2] = 100 (1)

Lại có x + y + z = 0

<=> (x2 + y2 + z2 + 2xy + 2yz + 2zx = 0 

<=> 10 + 2(xy + yz + zx) = 0

<=> xy + yz + zx = -5

<=> (xy + yz + zx)2 = 25

<=> (xy)2 + (yz)2 + (zx)2 + 2xy2z + 2xyz2 + 2x2yz = 25

<=> (xy)2 + (yz)2 + (zx)2 + 2xyz(x + y + z) = 25

<=> (xy)2 + (yz)2 + (zx)2 = 25 (vì x + y + z = 0) (2)

Thay (2) vào (1) => x4 + y4 + z4 + 2.25 = 100

<=> x4 + y4 + z4 = 50

Khi đó B = x4 + y4 + z4 - 34 = 50 - 81 = -29

1 tháng 7 2021

Ta có : \(\hept{\begin{cases}\left(x+y+z\right)^2=0\\x^2+y^2+z^2=10\end{cases}< =>2\left(xy+yz+zx\right)}=-10< =>xy+yz+zx=-5\)

\(< =>\left(xy+yz+zx\right)^2=25< =>x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)=25\)

\(< =>x^2y^2+y^2z^2+z^2x^2=25\)

Lại có : \(\left(x^2+y^2+z^2\right)^2=100< =>x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)=100\)

\(< =>x^4+y^4+z^4=50\)\(\Rightarrow x^4+y^4+z^4-3^4=50-3^4=-31\)

\(\Rightarrow B=-31\)

mình làm nháp nha bạn , nếu trình bày ra giấy thì phải chặt chẽ hơn

20 tháng 10 2019

2.Câu hỏi của Lãnh Hàn Thần - Toán lớp 8 - Học toán với OnlineMath

31 tháng 10 2021

\(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2+2.\left(xy+yz+xz\right)=0\)

\(\Rightarrow1+2.\left(xy+yz+xz\right)=0\)

\(\Rightarrow xy+yz+xz=\frac{-1}{2}\)

\(\Rightarrow\left(xy+yz+xz\right)^2=\frac{1}{4}\)

\(\Rightarrow x^2y^2+y^2z^2+x^2z^2+2.\left(xy^2z+xyz^2+x^2yz\right)=\frac{1}{4}\)

\(\Rightarrow x^2y^2+y^2z^2+x^2z^2=\frac{1}{4}\)

\(x^2+y^2+z^2=1\)

\(\Rightarrow\left(x^2+y^2+z^2\right)^2=1\)

\(\Rightarrow x^4+y^4+z^4+2.\left(x^2y^2+y^2z^2+x^2z^2\right)=1\)

\(\Rightarrow x^4+y^4+z^4+2.\frac{1}{4}=1\)

\(\Rightarrow x^4+y^4+z^4=\frac{1}{2}\)

\(\Rightarrow S=\frac{1}{2}\)

21 tháng 7 2017

Xin lỗi bạn mình mới học lớp 6 bạn k mình nha 

21 tháng 7 2017

bạn đúng mình nha 

29 tháng 12 2017

a, \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)(vì x+y=-z)

30 tháng 12 2017

Cảm ơn ạ

6 tháng 6 2015

1) x2-4x+5+y2+2y=0

<=>x2-4x+4+y2+2y+1=0

<=>(x-2)2+(x+1)2=0

<=>x-2=0 và x+1=0

<=>x=2    và x=-1

2)2p.p2-(p3-1)+(p+3)2p2-3p5 

<=>2p3-p3+1+2p3+6p2-3p5

<=>3p3+6p2-3p5+1

3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1

                                     =1

4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3

                                           =-18x2+3(đề sai)

 b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x

                                                    =16

Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x

5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0

b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0

6)M+(12x4-15x2y+2xy2+7)=0

<=>M                              =-(12x4-15x2y+2xy2+7)

<=>M                              =-12x4+15x2y-2xy2-7