K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

3/12.22+5/22.32+...+4041/20202.20212

=1/12-1/22+1/22-1/32+...+1/20202-1/20212

=1-1/20212 mà 1/20212>0 suy ra 1-1/20212<1 suy ra 3/12.22+5/22.32+...+4041/20202.20212<1

11 tháng 3 2022

Đây Là Lớp Mấy

5 tháng 3 2017

Đăt S = \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\)

S có 20 số hạng.Nhóm thành 2 nhóm,mỗi nhóm có 10 số hạng

Ta có: S = \(\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)\)

=> S < \(\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)

=> S < \(\frac{10}{20}+\frac{10}{30}\)

=> S < \(\frac{50}{60}=\frac{5}{6}\)       (1)

Lại có:S > \(\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)

=> S > \(\frac{10}{30}+\frac{10}{40}\)

=> S > \(\frac{70}{120}=\frac{7}{12}\)        (2)

Từ (1) và (2) => \(\frac{7}{12}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{5}{6}\) (đpcm)

14 tháng 5 2020

đpcm là gì vậy bạn

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

22 tháng 3 2022

\(A=\dfrac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)

\(=\dfrac{5.2^{18}.3^{18}.2^{12}-2.2^{28}.3^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)

\(=\dfrac{5.2^{20}.3^{18}-2^{29}.3^{18}}{2^{28}.3^{18}\left(5-7.2\right)}\)

\(=\dfrac{2^{29}.3^{18}\left(5.2-1\right)}{2^{28}.3^{18}\left(5-14\right)}=\dfrac{2.9}{-9}=-2\)

22 tháng 3 2022

AI LÀM ĐƯỢC TẶNG 2  COIN NÈ MẠI DÔ

13 tháng 11 2023

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:
Gọi biểu thức trên là $A$
Dễ thấy:

$3^{2^{4n+1}}$ lẻ, $2^{3^{4n+1}}$ chẵn, $5$ lẻ với mọi $n$ tự nhiên 

Do đó $A$ chẵn hay $A\vdots 2(*)$

Mặt khác:

$2^4\equiv 1\pmod 5\Rightarrow 2^{4n+1}\equiv 2\pmod 5$

$\Rightarrow 2^{4n+1}=5k+2$ với $k$ tự nhiên 

$\Rightarrow 3^{2^{4n+1}}=3^{5k+2}=9.(3^5)^k\equiv 9.1^k\equiv 9\pmod {11}$

Và:

$3^4\equiv 1\pmod {10}\Rightarrow 3^{4n+1}\equiv 3\pmod {10}$

do đó $3^{4n+1}=10t+3$ với $t$ tự nhiên 

$\Rightarrow 2^{3^{4n+1}}=2^{10t+3}=8.(2^{10})^t\equiv 8.1^t\equiv 8\pmod{11}$

Do đó: 

$A\equiv 9+8+5=22\equiv 0\pmod {11}$
Vậy $A\vdots 11(**)$

Từ $(*); (**)\Rightarrow A\vdots 22$ (do $(2,11)=1$)