C/m: (x-2).(x^2+2x+4)=x^3-8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(P\left(x\right)=x^5+2x^4-9x^3-x\)
\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)
c:: \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^5+7x^4+4x^2-x-14\)
d: \(M\left(2\right)=32+7\cdot16+4\cdot4-2-14=144\)
\(M\left(-2\right)=-32+7\cdot16+4\cdot4+2-14=84\)
Tìm x:
a) x^3 - 25x = 0
b) (2x + 3)^2 = (x+4)^2
c) (2x-1)^2 - (2x-5)(2x+5) = 18
d) x^3 - 8 = (x-2)^3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-5^2\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
TH1: \(x=0\)
TH2: \(x+5=0\Rightarrow x=-5\)
TH3: \(x-5=0\Rightarrow x=5\)
a, x3-25x = 0
\(\Leftrightarrow\) x( x2- 25) = 0
\(\Leftrightarrow\) x( x- 5)( x+ 5) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: S= { 0; 5; -5}
b, (2x+3)2 = (x+4)2
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+3=x+4\\2x+3=-x-4\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x-x=4-3\\2x+x=-4-3\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=\dfrac{-7}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm: S= {1; \(\dfrac{-7}{3}\)}
c, (2x-1)2 - (2x-5)(2x+5) = 18
\(\Leftrightarrow\) 4x2- 4x+ 1 - ( 4x2- 25) = 18
\(\Leftrightarrow\) 4x2- 4x+ 1- 4x2+ 25 = 18
\(\Leftrightarrow\) -4x + 26 = 18
\(\Leftrightarrow\) -4x = -8
\(\Leftrightarrow\) x = 2
Vậy phương trình có tập nghiệm S = { 2}
d, x3 - 8 = ( x-2)3
\(\Leftrightarrow\) x3 - 8 = x3 - 6x2 + 12x -8
\(\Leftrightarrow\) 6x2 - 12x = 0
\(\Leftrightarrow\) 6x( x- 2) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm: S = {0; 2}
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
A. \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+3x+2x+6\right)-\left(x^2+5x-2x-10\right)=0\)
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(\Leftrightarrow x^2+3x+2x-x^2-5x+2x=-6-10\)
\(\Leftrightarrow2x=-16\)
\(\Leftrightarrow x=-8\) .Vậy \(S=\left\{-8\right\}\)
B. \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x+5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x+5x-20\)
\(\Leftrightarrow2x^2-8x+3x+x^2-2x-5x-3x^2+12x-5x=12-10-20\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\) . Vậy \(S=\left\{\dfrac{18}{5}\right\}\)
C. \(\left(8-4x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow8x-4x^2-8x+4x^2+4x-8x=-16+8\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\) . Vậy \(S=\left\{2\right\}\)
D. \(\left(2x-3\right)\left(8x+2\right)=\left(4x+1\right)\left(4x-1\right)-3\)
\(\Leftrightarrow16x^2+4x-24x-6=16x^2+1^2-3\)
\(\Leftrightarrow16x^2+4x-24x-16x^2=6+1-3\)
\(\Leftrightarrow-20x=4\)
\(\Leftrightarrow x=-\dfrac{1}{5}\) . Vậy \(S=\left\{-\dfrac{1}{5}\right\}\)
a)(x+2)(x+3)-(x-2)(x+5)=0
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
<=>2x=-16
<=>x=-8
b)(2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow5x=22\Leftrightarrow x=\dfrac{22}{5}\)
c)(8-4x)(x+2)+4(x-2)(x+1)=0
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow-4x=-8\Leftrightarrow x=2\)
d)(2x-3)(8x+2)=(4x+1)(4x-1)-3
\(\Leftrightarrow16x^2+4x-24x-6=16x^2-4x+4x-1-3\)
\(\Leftrightarrow-20x=-2\Leftrightarrow x=\dfrac{-1}{10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(\Leftrightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\frac{22}{5}\)
b/ \(\Leftrightarrow-5x^2-2x+16+4x^2-4x-8+2x^2-8=0\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
c/ \(\Leftrightarrow24x^2+7x-6-4x^2-9x+28=10x^2+3x-1-33\)
\(\Leftrightarrow10x^2-5x+56=0\)
Phương trình vô nghiệm (chắc do bạn ghi sai đề)
a/ ⇔2x2−5x−12+x2−7x+10=3x2−17x+20⇔2x2−5x−12+x2−7x+10=3x2−17x+20
⇔5x=22⇔5x=22
⇒x=225⇒x=225
b/ ⇔−5x2−2x+16+4x2−4x−8+2x2−8=0⇔−5x2−2x+16+4x2−4x−8+2x2−8=0
⇔x2−6x=0⇔x2−6x=0
⇔x(x−6)=0⇒[x=0x=6⇔x(x−6)=0⇒[x=0x=6
c/ ⇔24x2+7x−6−4x2−9x+28=10x2+3x−1−33⇔24x2+7x−6−4x2−9x+28=10x2+3x−1−33
⇔10x2−5x+56=0⇔10x2−5x+56=0
Phương trình vô nghiệm (chắc do bạn ghi sai đề)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 5:
a: \(8A=8+8^2+...+8^8\)
\(\Leftrightarrow7A=8^8-1\)
hay \(A=\dfrac{8^8-1}{7}\)
b: \(8B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(\Leftrightarrow8B=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(\Leftrightarrow8B=3^{16}-1\)
hay \(B=\dfrac{3^{16}-1}{8}\)
Trả lời:
( x - 2 ) ( x2 + 2x + 4 )
= x3 + 2x2 + 4x - 2x2 - 4x - 8
= x3 - 8 ( đpcm )
\(\left(x-2\right)\left(x^2+2x+4\right)=x^3-8\)
Mà: \(\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow x^3+2x^2+4x-2x^2-4x-8\)
\(\Leftrightarrow x^3-8\) \(\left(đpcm\right)\)