K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

Trả lời:

( x - 2 ) ( x2 + 2x + 4 ) 

= x3 + 2x2 + 4x - 2x2 - 4x - 8 

= x3 - 8 ( đpcm )

30 tháng 6 2021

\(\left(x-2\right)\left(x^2+2x+4\right)=x^3-8\)

Mà: \(\left(x-2\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow x^3+2x^2+4x-2x^2-4x-8\)

\(\Leftrightarrow x^3-8\) \(\left(đpcm\right)\)

https://i.imgur.com/NftyOSo.jpg
https://i.imgur.com/lNuNLji.jpg
2 tháng 10 2018

\(a.\) \(x^3-25x=0\)

\(\Leftrightarrow x\left(x^2-5^2\right)=0\)

\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)

TH1: \(x=0\)

TH2: \(x+5=0\Rightarrow x=-5\)

TH3: \(x-5=0\Rightarrow x=5\)

2 tháng 10 2018

a, x3-25x = 0

\(\Leftrightarrow\) x( x2- 25) = 0

\(\Leftrightarrow\) x( x- 5)( x+ 5) = 0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: S= { 0; 5; -5}

b, (2x+3)2 = (x+4)2

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+3=x+4\\2x+3=-x-4\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x-x=4-3\\2x+x=-4-3\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=\dfrac{-7}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm: S= {1; \(\dfrac{-7}{3}\)}

c, (2x-1)2 - (2x-5)(2x+5) = 18

\(\Leftrightarrow\) 4x2- 4x+ 1 - ( 4x2- 25) = 18

\(\Leftrightarrow\) 4x2- 4x+ 1- 4x2+ 25 = 18

\(\Leftrightarrow\) -4x + 26 = 18

\(\Leftrightarrow\) -4x = -8

\(\Leftrightarrow\) x = 2

Vậy phương trình có tập nghiệm S = { 2}

d, x3 - 8 = ( x-2)3

\(\Leftrightarrow\) x3 - 8 = x3 - 6x2 + 12x -8

\(\Leftrightarrow\) 6x2 - 12x = 0

\(\Leftrightarrow\) 6x( x- 2) = 0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm: S = {0; 2}

NV
18 tháng 9 2019

a/ \(\Leftrightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\)

\(\Leftrightarrow5x=22\)

\(\Rightarrow x=\frac{22}{5}\)

b/ \(\Leftrightarrow-5x^2-2x+16+4x^2-4x-8+2x^2-8=0\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

c/ \(\Leftrightarrow24x^2+7x-6-4x^2-9x+28=10x^2+3x-1-33\)

\(\Leftrightarrow10x^2-5x+56=0\)

Phương trình vô nghiệm (chắc do bạn ghi sai đề)

18 tháng 9 2019

a/ ⇔2x2−5x−12+x2−7x+10=3x2−17x+20⇔2x2−5x−12+x2−7x+10=3x2−17x+20

⇔5x=22⇔5x=22

⇒x=225⇒x=225

b/ ⇔−5x2−2x+16+4x2−4x−8+2x2−8=0⇔−5x2−2x+16+4x2−4x−8+2x2−8=0

⇔x2−6x=0⇔x2−6x=0

⇔x(x−6)=0⇒[x=0x=6⇔x(x−6)=0⇒[x=0x=6

c/ ⇔24x2+7x−6−4x2−9x+28=10x2+3x−1−33⇔24x2+7x−6−4x2−9x+28=10x2+3x−1−33

⇔10x2−5x+56=0⇔10x2−5x+56=0

Phương trình vô nghiệm (chắc do bạn ghi sai đề)

1 tháng 9 2019

a) (x+8).(x+60) -x2 =104

x2+6x+ 8x- 48 - x2 =104

14x + 48 =104

14x =104 -48

14x =56

x =\(\frac{56}{14}\)

x =4

b) 6x2 -( 2x-3)(3x+2)=0

6x2 -(6x2+4x-9x-6)-1=0

6x2-(6x2-5x-6)-1=0

6x2-6x2+5x+6-1=0

5x+5=0

5x=-5

x=\(\frac{-5}{5}\)=-1

Vậy.....

Bài 5: 

a: \(8A=8+8^2+...+8^8\)

\(\Leftrightarrow7A=8^8-1\)

hay \(A=\dfrac{8^8-1}{7}\)

b: \(8B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)

\(\Leftrightarrow8B=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\)

\(\Leftrightarrow8B=3^{16}-1\)

hay \(B=\dfrac{3^{16}-1}{8}\)

9 tháng 7 2018

A. \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+3x+2x+6\right)-\left(x^2+5x-2x-10\right)=0\)
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(\Leftrightarrow x^2+3x+2x-x^2-5x+2x=-6-10\)
\(\Leftrightarrow2x=-16\)
\(\Leftrightarrow x=-8\)
.Vậy \(S=\left\{-8\right\}\)

B. \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x+5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x+5x-20\)
\(\Leftrightarrow2x^2-8x+3x+x^2-2x-5x-3x^2+12x-5x=12-10-20\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\) . Vậy \(S=\left\{\dfrac{18}{5}\right\}\)

C. \(\left(8-4x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow8x-4x^2-8x+4x^2+4x-8x=-16+8\)

\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\) . Vậy \(S=\left\{2\right\}\)

D. \(\left(2x-3\right)\left(8x+2\right)=\left(4x+1\right)\left(4x-1\right)-3\)
\(\Leftrightarrow16x^2+4x-24x-6=16x^2+1^2-3\)
\(\Leftrightarrow16x^2+4x-24x-16x^2=6+1-3\)
\(\Leftrightarrow-20x=4\)
\(\Leftrightarrow x=-\dfrac{1}{5}\) . Vậy \(S=\left\{-\dfrac{1}{5}\right\}\)

9 tháng 7 2018

a)(x+2)(x+3)-(x-2)(x+5)=0

\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)

<=>2x=-16

<=>x=-8

b)(2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)

\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)

\(\Leftrightarrow5x=22\Leftrightarrow x=\dfrac{22}{5}\)

c)(8-4x)(x+2)+4(x-2)(x+1)=0

\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)

\(\Leftrightarrow-4x=-8\Leftrightarrow x=2\)

d)(2x-3)(8x+2)=(4x+1)(4x-1)-3

\(\Leftrightarrow16x^2+4x-24x-6=16x^2-4x+4x-1-3\)

\(\Leftrightarrow-20x=-2\Leftrightarrow x=\dfrac{-1}{10}\)

19 tháng 6 2019

Giải pt :

a) \(2x\left(x+5\right)-\left(x-3\right)^2=x^2+6\)

\(\Leftrightarrow2x^2+10x-x^2+6x-9-x^2-6=0\)

\(\Leftrightarrow16x-15=0\)

\(\Leftrightarrow x=\frac{15}{16}\)

b) \(6\left(x-3\right)+\left(x-1\right)^2-\left(x+1\right)^2=2x\)

\(\Leftrightarrow2x-18=2x\)

\(\Leftrightarrow-18=0\)( vô lí )

=> x thuộc rỗng

c)d) tương tự

e) \(\frac{5x-2}{6}+\frac{3-4x}{2}=2-\frac{x+7}{3}\)

\(\Leftrightarrow\frac{5x-2}{6}+\frac{9-12x}{6}=\frac{12}{6}-\frac{2x+14}{6}\)

\(\Leftrightarrow5x-2+9-12x=12-2x-14\)

\(\Leftrightarrow-5x+9=0\)

\(\Leftrightarrow x=\frac{9}{5}\)

f) \(\frac{2x-1}{2}=\frac{2x+1}{4}-\frac{1-2x}{8}\)

\(\Leftrightarrow\frac{4\left(2x-1\right)}{8}=\frac{2\left(2x+1\right)}{8}-\frac{1-2x}{8}\)

\(\Leftrightarrow8x-4=4x+2-1+2x\)

\(\Leftrightarrow2x-5=0\)

\(\Leftrightarrow x=\frac{5}{2}\)

19 tháng 6 2019

Tìm x :

a) \(3x^3-27x=0\)

\(\Leftrightarrow3x\left(x^2-9\right)=0\)

\(\Leftrightarrow3x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b) \(2x^3-12x^2+18x=0\)

\(\Leftrightarrow2x\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

a: \(P=\left[\left(x-2\right)\left(x^2+2x+4\right)\cdot\dfrac{x+2}{x^2+2x+4}-\dfrac{\left(x-2\right)\left(x+2\right)}{x^2+2x+4}\cdot\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x+2}\right]:\left(x-1\right)\)

\(=\dfrac{\left[x^2-4-\left(x-2\right)^2\right]}{x-1}\)

\(=\dfrac{x^2-4-x^2+4x-4}{x-1}=\dfrac{4x}{x-1}\)

b: Để P là số nguyên thì \(4x-4+4⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{0;3;-1;5;-3\right\}\)