![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm x:
a) x^3 - 25x = 0
b) (2x + 3)^2 = (x+4)^2
c) (2x-1)^2 - (2x-5)(2x+5) = 18
d) x^3 - 8 = (x-2)^3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-5^2\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
TH1: \(x=0\)
TH2: \(x+5=0\Rightarrow x=-5\)
TH3: \(x-5=0\Rightarrow x=5\)
a, x3-25x = 0
\(\Leftrightarrow\) x( x2- 25) = 0
\(\Leftrightarrow\) x( x- 5)( x+ 5) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: S= { 0; 5; -5}
b, (2x+3)2 = (x+4)2
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+3=x+4\\2x+3=-x-4\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x-x=4-3\\2x+x=-4-3\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=\dfrac{-7}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm: S= {1; \(\dfrac{-7}{3}\)}
c, (2x-1)2 - (2x-5)(2x+5) = 18
\(\Leftrightarrow\) 4x2- 4x+ 1 - ( 4x2- 25) = 18
\(\Leftrightarrow\) 4x2- 4x+ 1- 4x2+ 25 = 18
\(\Leftrightarrow\) -4x + 26 = 18
\(\Leftrightarrow\) -4x = -8
\(\Leftrightarrow\) x = 2
Vậy phương trình có tập nghiệm S = { 2}
d, x3 - 8 = ( x-2)3
\(\Leftrightarrow\) x3 - 8 = x3 - 6x2 + 12x -8
\(\Leftrightarrow\) 6x2 - 12x = 0
\(\Leftrightarrow\) 6x( x- 2) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm: S = {0; 2}
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(\Leftrightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\frac{22}{5}\)
b/ \(\Leftrightarrow-5x^2-2x+16+4x^2-4x-8+2x^2-8=0\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
c/ \(\Leftrightarrow24x^2+7x-6-4x^2-9x+28=10x^2+3x-1-33\)
\(\Leftrightarrow10x^2-5x+56=0\)
Phương trình vô nghiệm (chắc do bạn ghi sai đề)
a/ ⇔2x2−5x−12+x2−7x+10=3x2−17x+20⇔2x2−5x−12+x2−7x+10=3x2−17x+20
⇔5x=22⇔5x=22
⇒x=225⇒x=225
b/ ⇔−5x2−2x+16+4x2−4x−8+2x2−8=0⇔−5x2−2x+16+4x2−4x−8+2x2−8=0
⇔x2−6x=0⇔x2−6x=0
⇔x(x−6)=0⇒[x=0x=6⇔x(x−6)=0⇒[x=0x=6
c/ ⇔24x2+7x−6−4x2−9x+28=10x2+3x−1−33⇔24x2+7x−6−4x2−9x+28=10x2+3x−1−33
⇔10x2−5x+56=0⇔10x2−5x+56=0
Phương trình vô nghiệm (chắc do bạn ghi sai đề)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 5:
a: \(8A=8+8^2+...+8^8\)
\(\Leftrightarrow7A=8^8-1\)
hay \(A=\dfrac{8^8-1}{7}\)
b: \(8B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(\Leftrightarrow8B=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\)
\(\Leftrightarrow8B=3^{16}-1\)
hay \(B=\dfrac{3^{16}-1}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A. \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+3x+2x+6\right)-\left(x^2+5x-2x-10\right)=0\)
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(\Leftrightarrow x^2+3x+2x-x^2-5x+2x=-6-10\)
\(\Leftrightarrow2x=-16\)
\(\Leftrightarrow x=-8\) .Vậy \(S=\left\{-8\right\}\)
B. \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x+5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x+5x-20\)
\(\Leftrightarrow2x^2-8x+3x+x^2-2x-5x-3x^2+12x-5x=12-10-20\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\) . Vậy \(S=\left\{\dfrac{18}{5}\right\}\)
C. \(\left(8-4x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow8x-4x^2-8x+4x^2+4x-8x=-16+8\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\) . Vậy \(S=\left\{2\right\}\)
D. \(\left(2x-3\right)\left(8x+2\right)=\left(4x+1\right)\left(4x-1\right)-3\)
\(\Leftrightarrow16x^2+4x-24x-6=16x^2+1^2-3\)
\(\Leftrightarrow16x^2+4x-24x-16x^2=6+1-3\)
\(\Leftrightarrow-20x=4\)
\(\Leftrightarrow x=-\dfrac{1}{5}\) . Vậy \(S=\left\{-\dfrac{1}{5}\right\}\)
a)(x+2)(x+3)-(x-2)(x+5)=0
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
<=>2x=-16
<=>x=-8
b)(2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow5x=22\Leftrightarrow x=\dfrac{22}{5}\)
c)(8-4x)(x+2)+4(x-2)(x+1)=0
\(\Leftrightarrow8x+16-4x^2-8x+4x^2+4x-8x-8=0\)
\(\Leftrightarrow-4x=-8\Leftrightarrow x=2\)
d)(2x-3)(8x+2)=(4x+1)(4x-1)-3
\(\Leftrightarrow16x^2+4x-24x-6=16x^2-4x+4x-1-3\)
\(\Leftrightarrow-20x=-2\Leftrightarrow x=\dfrac{-1}{10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải pt :
a) \(2x\left(x+5\right)-\left(x-3\right)^2=x^2+6\)
\(\Leftrightarrow2x^2+10x-x^2+6x-9-x^2-6=0\)
\(\Leftrightarrow16x-15=0\)
\(\Leftrightarrow x=\frac{15}{16}\)
b) \(6\left(x-3\right)+\left(x-1\right)^2-\left(x+1\right)^2=2x\)
\(\Leftrightarrow2x-18=2x\)
\(\Leftrightarrow-18=0\)( vô lí )
=> x thuộc rỗng
c)d) tương tự
e) \(\frac{5x-2}{6}+\frac{3-4x}{2}=2-\frac{x+7}{3}\)
\(\Leftrightarrow\frac{5x-2}{6}+\frac{9-12x}{6}=\frac{12}{6}-\frac{2x+14}{6}\)
\(\Leftrightarrow5x-2+9-12x=12-2x-14\)
\(\Leftrightarrow-5x+9=0\)
\(\Leftrightarrow x=\frac{9}{5}\)
f) \(\frac{2x-1}{2}=\frac{2x+1}{4}-\frac{1-2x}{8}\)
\(\Leftrightarrow\frac{4\left(2x-1\right)}{8}=\frac{2\left(2x+1\right)}{8}-\frac{1-2x}{8}\)
\(\Leftrightarrow8x-4=4x+2-1+2x\)
\(\Leftrightarrow2x-5=0\)
\(\Leftrightarrow x=\frac{5}{2}\)
Tìm x :
a) \(3x^3-27x=0\)
\(\Leftrightarrow3x\left(x^2-9\right)=0\)
\(\Leftrightarrow3x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b) \(2x^3-12x^2+18x=0\)
\(\Leftrightarrow2x\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(P=\left[\left(x-2\right)\left(x^2+2x+4\right)\cdot\dfrac{x+2}{x^2+2x+4}-\dfrac{\left(x-2\right)\left(x+2\right)}{x^2+2x+4}\cdot\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x+2}\right]:\left(x-1\right)\)
\(=\dfrac{\left[x^2-4-\left(x-2\right)^2\right]}{x-1}\)
\(=\dfrac{x^2-4-x^2+4x-4}{x-1}=\dfrac{4x}{x-1}\)
b: Để P là số nguyên thì \(4x-4+4⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{0;3;-1;5;-3\right\}\)
Trả lời:
( x - 2 ) ( x2 + 2x + 4 )
= x3 + 2x2 + 4x - 2x2 - 4x - 8
= x3 - 8 ( đpcm )
\(\left(x-2\right)\left(x^2+2x+4\right)=x^3-8\)
Mà: \(\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow x^3+2x^2+4x-2x^2-4x-8\)
\(\Leftrightarrow x^3-8\) \(\left(đpcm\right)\)