Tìm x biết \(\sqrt{x+4}+2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}}=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=0\)
\(\Leftrightarrow x+\frac{1}{2}-\sqrt{3}+1=0\)
\(\Leftrightarrow x=\sqrt{3}-1-\frac{1}{2}\)
\(\Leftrightarrow x=\sqrt{3}-\frac{3}{2}\)
b)\(x-5\sqrt{x}+6=0\)
\(\Leftrightarrow x-2\sqrt{x}-3\sqrt{x}+6=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}-2=0\\\sqrt{x}-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=2\\\sqrt{x}=3\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=9\end{array}\right.\)
a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)(ĐKXĐ: \(x\ge\pm3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)(TM)
b)\(\sqrt{x^2-4}-2\sqrt{x+2}=0\)
ĐKXĐ: \(x\ge\pm2\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-2\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{x-2}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=0\\\sqrt{x-2}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(ktm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
\(\begin{array}{l}a)\sqrt x - 16 = 0\\\sqrt x = 16\\x = {16^2}\\x = 256\end{array}\)
Vậy x = 256
\(\begin{array}{l}b)2\sqrt x = 1,5\\\sqrt x = 1,5:2\\\sqrt x = 0.75\\x = {(0,75)^2}\\x = 0,5625\end{array}\)
Vậy x = 0,5625
\(\begin{array}{l}c)\sqrt {x + 4} - 0,6 = 2,4\\\sqrt {x + 4} = 2,4 + 0,6\\\sqrt {x + 4} = 3\\x + 4 = 9\\x = 5\end{array}\)
Vậy x = 5
a,ĐKXĐ:\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
\(\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=4-\sqrt{x}-\sqrt{y}\left(đk:x;y>0\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}=4\)
Do x,y là các số thực dương nên sử dụng BĐT AM-GM cho 2 số không âm ta có :
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\sqrt{\frac{1}{\sqrt{x}}.\sqrt{x}}=2\)
\(\frac{1}{\sqrt{y}}+\sqrt{y}\ge2\sqrt{\frac{1}{\sqrt{y}}.\sqrt{y}}=2\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}\ge2+2=4\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}\frac{1}{\sqrt{x}}=\sqrt{x}\Leftrightarrow x=1\\\frac{1}{\sqrt{y}}=\sqrt{y}\Leftrightarrow y=1\end{cases}\Leftrightarrow}x=y=1\)
Vậy nghiệm của phương trình trên là \(x=y=1\)
6: Để P>1 thì P-1>0
\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\sqrt{a}-2< 0\)
hay a<4
Kết hợp ĐKXĐ, ta được: \(0\le a< 4\)
5: Để P>0 thì \(x-4\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}-4>0\)
hay x>16
\(A=P:Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}:\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}=1+\dfrac{-5}{\sqrt{x}+4}\)
Điều kiện : \(x\ge4\Rightarrow\sqrt{x}+4\ge4\Rightarrow-\dfrac{5}{\sqrt{x}+4}\le-\dfrac{5}{4}\Rightarrow\dfrac{5}{\sqrt{x}+4}\ge\dfrac{5}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x=0\)
Vậy \(min_A=\dfrac{5}{4}\Leftrightarrow x=0\)
\(a,đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
\(b,x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow x=\sqrt{3}-1\)
\(\Rightarrow A=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}\)
\(b,A=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}\)\(=1-\frac{4}{\sqrt{x}+2}\)
\(A\in Z\Leftrightarrow1-\frac{4}{\sqrt{x}+2}\in Z\Rightarrow\frac{4}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ_4\)
Mà \(Ư_4=\left\{\pm1;\pm2;\pm4\right\}\)Nhưng \(\sqrt{x}+2\ge2\)\(\Rightarrow\sqrt{x}+2\in\left\{2;4\right\}\)
\(Th1:\sqrt{x}+2=2\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(Th2:\sqrt{x}+2=4\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(KL:x\in\left\{0;4\right\}\)
\(\sqrt{x+2}+4=0\)
=> \(\sqrt{x+2}=-4\)
=> x+2 = (-4)2
=> x+2 = 16
=> x = 16 - 2
=> x = 14
SAi mà Hồ Thu Giang