K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

\(\sqrt{x+2}+4=0\)

=> \(\sqrt{x+2}=-4\)

=> x+2 = (-4)2

=> x+2 = 16

=> x = 16 - 2

=> x = 14

5 tháng 8 2015

SAi mà Hồ Thu Giang

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

\(\begin{array}{l}a)\sqrt x  - 16 = 0\\\sqrt x  = 16\\x = {16^2}\\x = 256\end{array}\)

Vậy x = 256

\(\begin{array}{l}b)2\sqrt x  = 1,5\\\sqrt x  = 1,5:2\\\sqrt x  = 0.75\\x = {(0,75)^2}\\x = 0,5625\end{array}\)

Vậy x = 0,5625

\(\begin{array}{l}c)\sqrt {x + 4}  - 0,6 = 2,4\\\sqrt {x + 4}  = 2,4 + 0,6\\\sqrt {x + 4}  = 3\\x + 4 = 9\\x = 5\end{array}\)

Vậy x = 5

10 tháng 8 2017

a) 1 

b) 1 hoặc 0

c) 0

d) 2

Căn bản cx đã muộn nên mk làm ngắn gọn, nếu bn cần lời giải chi tiết hãy add mk để có lời giải chi tiết nhé!

`#3107.101107`

`1/2x + 4/5 = 2x - 8/5`

`=> 1/2x - 2x = -4/5 - 8/5`

`=> -3/2x = -12/5`

`=> x = -12/5 \div (-3/2)`

`=> x = 8/5`

Vậy, `x = 8/5`

_____

`\sqrt{x} = 5`

`=> x = 5^2`

`=> x = 25`

Vậy, `x = 25`

___

`x^2 = 3`

`=> x^2 =  (+-\sqrt{3})^2`

`=> x = +- \sqrt{3}`

Vậy, `x \in {-\sqrt{3}; \sqrt{3}}.`

15 tháng 1 2016

|5x-3|-2x=14

=>|5x-3|=14+2x

=>5x-3=14+2x hoặc 5x-3=-14-2x

=>x=17/3 hoặc x=-11/7

=>x ko tồn tại

15 tháng 1 2016

5/x+y/4=1/8

=>5/x=1/8-y/4

=>5/x=1/8-2y/8=(1-2y)/8

=>x.(1-2y)=5.8=40

rồi lập bảng (chú ý là 1-2y là ước lẻ của 40)

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) |x| = 4

\(\left[ {_{x =  - 4}^{x = 4}} \right.\)

Vậy \(x \in \{ 4; - 4\} \)

b) |x| = \(\sqrt 7 \)

\(\left[ {_{x =  - \sqrt 7 }^{x = \sqrt 7 }} \right.\)

Vậy \(x \in \{ \sqrt 7 ; - \sqrt 7 \} \)

c) ) |x+5| = 0

x+5 = 0

x = -5

Vậy x = -5

d) \(\left| {x - \sqrt 2 } \right|\) = 0

x - \(\sqrt 2 \) = 0

x = \(\sqrt 2 \)

Vậy x =\(\sqrt 2 \)

24 tháng 1 2017

f)

\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)

x-3={-4)=> x=-1

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$

$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$

$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$

Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$

$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$

ĐKXĐ: x>=0

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;2\right\}\)

27 tháng 5 2022

Tham khảo

undefined