K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của phân thức cực hay, có đáp án | Toán lớp 8

27 tháng 4 2019

Chọn C.

Áp dụng kết quả cơ bản

Đẳng thức xảy ra khi và chỉ khi  x = 1

30 tháng 8 2021

a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(minA=-3\Leftrightarrow x=2\)

b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)

\(maxB=21\Leftrightarrow x=-4\)

c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)

\(minC=11\Leftrightarrow x=2\)

d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)

\(maxD=4\Leftrightarrow x=-1\)

30 tháng 8 2021

a) A = (x-2)^2 - 3 >= -3

--> A nhỏ nhất bằng -3

 <=> x = 2

27 tháng 11 2017

Chọn C.

Ta có:  f ' x = 3 x 2 - 6 x ⇒ f ' x = 0

⇔ 3 x 2 - 6 x = 0

Lại có

⇒ M + m = 20

7 tháng 12 2017

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của phân thức cực hay, có đáp án | Toán lớp 8

20 tháng 9 2018

Ta có:

Vậy giá trị lớn nhất của P(x) là:  17 4 khi x = 0.

16 tháng 10 2021

\(A=3x^2+6x+15=3\left(x^2+2x+1\right)+12\)

\(=3\left(x+1\right)^2+12\ge12\)

\(minA=12\Leftrightarrow x=-1\)

16 tháng 10 2021

cảm ơn nhiều ạ

28 tháng 9 2018

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của phân thức cực hay, có đáp án | Toán lớp 8

17 tháng 8 2018

TXĐ: D = R.

y ' = 3 x 2 - 6 x - 9 ;

y' = 0 ⇔ x = –1 hoặc x = 3.

+ Xét hàm số trên đoạn [-4; 4] :

y(-4) = -41 ;

y(-1) = 40 ;

y(3) = 8

y(4) = 15.

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

+ Xét hàm số trên [0 ; 5].

y(0) = 35 ;

y(3) = 8 ;

y(5) = 40.

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

AH
Akai Haruma
Giáo viên
3 tháng 2

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

AH
Akai Haruma
Giáo viên
3 tháng 2

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max.