K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của phân thức cực hay, có đáp án | Toán lớp 8

7 tháng 12 2017

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của phân thức cực hay, có đáp án | Toán lớp 8

20 tháng 9 2018

Ta có:

Vậy giá trị lớn nhất của P(x) là:  17 4 khi x = 0.

16 tháng 10 2021

\(A=3x^2+6x+15=3\left(x^2+2x+1\right)+12\)

\(=3\left(x+1\right)^2+12\ge12\)

\(minA=12\Leftrightarrow x=-1\)

16 tháng 10 2021

cảm ơn nhiều ạ

28 tháng 9 2018

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của phân thức cực hay, có đáp án | Toán lớp 8

a: =4(x^2-3/2x-5)

=4(x^2-2*x*3/4+9/16-89/16)

=4(x-3/4)^2-89/4>=-89/4

Dấu = xảy ra khi x=3/4

b: =3(x^2-8/3x+1)

=3(x^2-2*x*4/3+16/9-7/9)

=3(x-4/3)^2-7/3>=-7/3

Dấu = xảy ra khi x=4/3

AH
Akai Haruma
Giáo viên
6 tháng 9 2023

Lời giải:

a. $A=4x^2-6x-20=(2x)^2-2.2x.\frac{3}{2}+(\frac{3}{2})^2-\frac{89}{4}$

$=(2x-\frac{3}{2})^2-\frac{89}{4}$
Vì $(2x-\frac{3}{2})^2\geq 0$ với mọi $x$

$\Rightarrow A\geq 0-\frac{89}{4}=\frac{-89}{4}$
Vậy $A_{\min}=\frac{-89}{4}$. Giá trị này đạt tại $2x-\frac{3}{2}=0$

$\Leftrightarrow x=\frac{3}{4}$

b.

$B=3x^2-8x+1=3(x^2-\frac{8}{3}x)+1$
$=3[x^2-2.x.\frac{4}{3}+(\frac{4}{3})^2]-\frac{13}{3}$

$=3(x-\frac{4}{3})^2-\frac{13}{3}\geq 3.0-\frac{13}{3}=\frac{-13}{3}$

Vậy $B_{\min}=\frac{-13}{3}$. Giá trị này đạt tại $x-\frac{4}{3}=0$

$\Leftrightarrow x=\frac{4}{3}$

NV
11 tháng 12 2021

\(A=2\left(x^2-2xy+y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{8067}{4}\)

\(A=2\left(x-y\right)^2+\left(x-\dfrac{3}{4}\right)^2+\dfrac{8067}{4}\ge\dfrac{8067}{4}\)

\(A_{min}=\dfrac{8067}{4}\) khi \(x=y=\dfrac{3}{2}\)

19 tháng 8 2023

Tìm giá trị nhỏ nhất của biểu thức:

a) Ta có: 

\(M=2x^2+4x+7\)

\(M=2\cdot\left(x^2+2x+\dfrac{7}{2}\right)\)

\(M=2\cdot\left(x^2+2x+1+\dfrac{5}{2}\right)\)

\(M=2\cdot\left[\left(x+1\right)^2+2,5\right]\)

\(M=2\left(x+1\right)^2+5\)

Mà: \(2\left(x+1\right)^2\ge0\forall x\) nên:

\(M=2\left(x+1\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra:

\(2\left(x+1\right)^2+5=5\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy: \(M_{min}=5\) khi \(x=-1\)

b) Ta có:

\(N=x^2-x+1\)

\(N=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\) nên \(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=" xảy ra: 

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy: \(N_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

19 tháng 8 2023

Tìm giá trị lớn nhất của biểu thức

a) Ta có: 

\(E=-4x^2+x-1\)

\(E=-\left(4x^2-x+1\right)\)

\(E=-\left[\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\right]\)

\(E=-\left[\left(2x-\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\)

Mà: \(\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\ge\dfrac{15}{16}\forall x\) nên 

\(\Rightarrow E=-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\le-\dfrac{15}{16}\forall x\)

Dấu "=" xảy ra:

\(-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]=-\dfrac{15}{16}\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2-\dfrac{15}{16}=-\dfrac{15}{16}\)

\(\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2=0\Leftrightarrow2x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)

Vậy: \(E_{max}=-\dfrac{15}{16}\) khi \(x=\dfrac{1}{16}\)

b) Ta có:

\(F=5x-3x^2+6\)

\(F=-3x^2+5x-6\)

\(F=-\left(3x^2-5x-6\right)\)

\(F=-3\left(x^2-\dfrac{5}{3}x-2\right)\)

\(F=-3\left[\left(x-\dfrac{5}{6}\right)^2-\dfrac{97}{36}\right]\)

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\)

Mà: \(-3\left(x-\dfrac{5}{6}\right)^2\le0\forall x\) nên:

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\le\dfrac{97}{36}\forall x\)

Dấu "=" xảy ra:

\(-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}=\dfrac{97}{36}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)

Vậy: \(F_{max}=\dfrac{97}{36}\) khi \(x=\dfrac{5}{6}\)

15 tháng 9 2021

\(C=-3x^2+12x-7=-3\left(x^2-4x+4\right)+12-7=-3\left(x-2\right)^2+5\le5\)

\(maxC=5\Leftrightarrow x=2\)

15 tháng 9 2021

\(C=-3\left(x^2+4x+4\right)+5=-3\left(x+2\right)^2+5\le5\)

Dấu \("="\Leftrightarrow x=-2\)

24 tháng 10 2017

B = 9 x - 3 x 2 = 3 3 x - x 2 = 3 9 / 4 - 9 / 4 + 2 . 3 / 2 x - x 2

= 3 9 / 4 - 9 / 4 - 3 / 2 x + x 2

3 9 / 4 - 3 / 2 x - x 2 = 27 / 4 - 3 / 2 - x 2

Vì 3 / 2 - x 2  ≥ 0 với mọi x

⇒ B = 27/4 −  3 / 2 - x 2  ≤ 27/4 do đó giá trị lớn nhất của B bằng 27/4 tại x = 3/2