K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

Theo tao mày nên học lại hệ thức lượng

NV
9 tháng 8 2021

\(\Leftrightarrow x^2-2xy+5y^2-y+1=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4y^2-y+\dfrac{1}{16}\right)+\dfrac{15}{16}=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(2y-\dfrac{1}{4}\right)^2+\dfrac{15}{16}=0\) (vô nghiệm)

Ko tồn tại x; y thỏa mãn pt

a: \(x^2+3y^2-4x+6y+7=0\)

\(\Leftrightarrow x^2-4x+4+3y^2+6y+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x,y\right)=\left(-2;1\right)\)

11 tháng 3 2023

\(x^2+4y^2=x^2y^2-2xy\)

\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)

\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)

\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)

\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)

Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:

TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)

TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)

\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)

Thay vào (1) ta được:

\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)

Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)

 

 

25 tháng 9 2016

x2+y2+6x-3x-2xy+7=0

\(\Leftrightarrow x^2+2\left(3-y\right)x+y^2-3y+7=0\)

Coi đây là pt bật 2 ẩn x ta có

\(\Delta'=\left(3-y\right)^2-y^2+3y-7\)

\(=y^2-6y+9-y^2+3y-7\)

\(=2-3y\)

Để pt có nghiệm \(\Leftrightarrow\Delta'\le0\)

\(\Rightarrow2-3y\le0\Leftrightarrow y\le\frac{2}{3}\)

y lớn nhất \(\Rightarrow y=\frac{2}{3}\)

thay vào tính tiếp

 

17 tháng 6 2021

sao denta phẩy lại bé hơn 0 ???

11 tháng 12 2021

\(\Rightarrow2x-4xy+2y=0\\ \Rightarrow2x\left(1-2y\right)+2y-1=-1\\ \Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\\ \Rightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right)\left(-1\right)\)

Với \(\left\{{}\begin{matrix}2x-1=1\\2y-1=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\rightarrow\left(1;1\right)\)

Với \(\left\{{}\begin{matrix}2x-1=-1\\2y-1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\rightarrow\left(0;0\right)\)

Vậy các cặp \(\left(x;y\right)\) cần tìm là \(\left(1;1\right);\left(0;0\right)\)

13 tháng 5 2021

2x2+y26x+2xy2y+5=02x2+y2−6x+2xy−2y+5=0

(x24x+4)+(x2+2xy+y2)(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0

(x2)2+(x+y)22(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0

(x2)2+(x+y

13 tháng 5 2021

MÁY TÔI LỖI ,SORRY

2x2+y26x+2xy2y+5=02x2+y2−6x+2xy−2y+5=0

(x24x+4)+(x2+2xy+y2)(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0

(x2)2+(x+y)22(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0

(x2)2+(x+y

13 tháng 5 2021

x+2xy+2y+6=0

x . (1 + 2y) + 2y + 6 = 0

x . (1 + 2y) + 2y + 1 = 5

(1 + 2y) . (x + 1) = 5

Phần còn lại làm đc nốt chưa

10 tháng 8 2023

Ta đặt y = x + k với k \(\inℤ\)

Khi đó 3x2 - y2 - 2xy - 2x - 2y + 40 = 0

<=> 3x2 - (x + k)2  - 2x(x + k) - 2x - 2(x + k) + 40 = 0

<=> k2 + 4xk + 4x + 2k - 40 = 0

<=> (k + 1)2 + 4x(k + 1) = 41

<=> (k + 1)(4x + k + 1) = 41

Ta lập bảng ta được : 

k + 1 1 41 -1 -41
4x + k + 1 41 1 -41 -1
x 10 -10  -10 10
k 0 40 -2 -42

lại có y = x + k

ta được các cặp (x;y) cần tìm là (10;10) ; (-10 ; 30) ; (-10 ; -12) ; (10;-32) 

19 tháng 6 2018

\(x-2xy+y=0\Rightarrow2\left(x-2xy+y\right)=0\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x\left(1-2y\right)+2y-1=2x\left(1-2y\right)-\left(1-2y\right)=-1\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

\(\Rightarrow2x-1;1-2y\inƯ\left(1\right)\Rightarrow2x-1;1-2y=+-1\)

\(2x-1=1\Rightarrow2x=2\Rightarrow x=1\)thì \(1-2y=-1\Rightarrow-2y=-2\Rightarrow y=1\)

\(2x-1=-1\Rightarrow2x=0\Rightarrow x=0\)thì \(1-2y=1\Rightarrow-2y=0\Rightarrow y=0\)

vậy x=1 thì y=1; x=0 thì y=0

x - 2xy + y = 0
<=> 2x - 4xy + 2y = 0
<=> 2x - 4xy + 2y - 1 = -1
<=> (2x - 4xy) - (1 - 2y) = -1
<=> 2x(1 - 2y) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = - 1
<=> 2x - 1 = -1 và 1 - 2y = 1
hoặc 2x - 1 = 1 và 1 - 2y = -1
<=>2x=2 và 2y=2
<=>x=1 và y=1