\(14\sqrt{x}-5x< \frac{15}{2}\)
tìm x
nhanh tay mk tick nhé ♥
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(14\cdot\sqrt{x}-5\cdot\sqrt{x}< \frac{15}{2}\)
\(\Leftrightarrow9\cdot\sqrt{x}< \frac{15}{2}\Leftrightarrow\sqrt{x}< \frac{5}{6}\Leftrightarrow x< \left(\frac{5}{6}\right)^2=\frac{25}{36}\)
Ta có 14 \(\sqrt{x}\)- 5 \(\sqrt{x}\)< \(\frac{15}{2}\)
=> \(\sqrt{x}\)(14-5) < \(\frac{15}{2}\)
=>\(\sqrt{x}\)9 < \(\frac{15}{2}\)
=> \(\sqrt{x}\)< \(\frac{15}{2}\):9
=> x < \(\left(\frac{5}{6}\right)^2\)
=> x < \(\frac{25}{36}\)
Vậy x < \(\frac{25}{36}\)
đk: x\(x\ge2,y\ge-1999,z\ge2000\)
pt <-> 2VT=x+y+z
<-> (x-2-\(2\sqrt{x-2}\)+1)+(y+1999-\(2\sqrt{y+1999}\)+1)+(z-2000-\(2\sqrt{z-2000}\)+1)=0
<-> \(\left(\sqrt{x-2}-1\right)^2\)+\(\left(\sqrt{y+1999}-1\right)^2\)+\(\left(\sqrt{z-2000}-1\right)^2\)=0
<-> \(\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y+1999}-1=0\\\sqrt{z-2000}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1998\\z=2001\end{cases}}}\)(tm)
1.\(DK:x\le\frac{1}{3}\)
2.\(DK:x\ge-1\)
3.\(DK:-1\le x< 1\)
\(A=\frac{-7x^2}{\sqrt{x-3}-2}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}\sqrt{x-3}-2\ne0\\x-3>0\end{cases}}\)
\(\sqrt{x-3}-2\ne0\Rightarrow\sqrt{x-3}\ne2\)
\(\Rightarrow x-3\ne4\Leftrightarrow x\ne7\)
\(x-3>0\Leftrightarrow x>3\)
Vậy điều kiện xác định của A là \(\hept{\begin{cases}x>3\\x\ne7\end{cases}}\)
ĐKXĐ:
\(\sqrt{x-3}\ge0\Rightarrow\sqrt{x-3}-2\ge-2\)
\(\Rightarrow x\ge3\)
Mà \(\sqrt{x-3}-2\ne0\) \(\Rightarrow x\ne7\)
Vậy \(x\ge3\) và \(x\ne7\)
\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
b/ Để R<-1 => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)
<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)
<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)
Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\) là sao vậy ạ?
\(\frac{11.3^{29}-\left(3.3\right)^{15}}{2^2.3^{28}}\)=\(\frac{11.3^{29}-3^{30}}{2^2.3^{28}}=\frac{3^{29}.\left(11-3\right)}{3^{28}.2^2}=\frac{3.8}{2^2}=3.2\)=6
Thuy Duong Nguyen đánh đề cẩn thận hơn bạn nhé
Lời giải :
a) ĐKXĐ : \(x\ne1\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b) \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}=\sqrt{2}-1\)
Khi đó \(A=\frac{2-5\left(\sqrt{2}-1\right)}{\sqrt{2}-1+3}\)
\(A=\frac{2-5\sqrt{2}+5}{\sqrt{2}+2}=\frac{7-5\sqrt{2}}{\sqrt{2}+2}\)
c) \(A=\frac{1}{2}\)
\(\Leftrightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)
\(\Leftrightarrow2\left(2-5\sqrt{x}\right)=\sqrt{x}+3\)
\(\Leftrightarrow4-10\sqrt{x}-\sqrt{x}-3=0\)
\(\Leftrightarrow1-11\sqrt{x}=0\)
\(\Leftrightarrow11\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{11}\)
\(\Leftrightarrow x=\frac{1}{121}\)( thỏa )
d) A nguyên \(\Leftrightarrow2-5\sqrt{x}⋮\sqrt{x}+3\)
\(\Leftrightarrow-5\left(\sqrt{x}+3\right)+17⋮\sqrt{x}+3\)
Vì \(-5\left(\sqrt{x}+3\right)⋮\sqrt{x}+3\)
\(\Rightarrow17⋮\sqrt{x}+3\)
\(\Rightarrow\sqrt{x}+3\inƯ\left(17\right)=\left\{17\right\}\)( vì \(\sqrt{x}+3\ge3\))
\(\Leftrightarrow\sqrt{x}=14\)
\(\Leftrightarrow x=196\)( thỏa )
Vậy....
\(a,ĐKXĐ:\orbr{\begin{cases}x+2\sqrt{x}+3\ne0\\\sqrt{x}+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{ }\sqrt{x}\ne-3\)
Rút gọn: p/s: sau phân số thứ 2 ở mẫu ko có x à? Bạn chép đề sai?
\(9\sqrt{x}< \frac{15}{2}\Leftrightarrow\sqrt{x}=\frac{5}{6}\Leftrightarrow x=\frac{25}{36}\)