\(\frac{x^2}{\left(x+2\right)^2}\)= 3x2-6x-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-3}{\left(7-6x\right)^2}+\frac{x-2}{\left(7-6x\right)^2}=\frac{6x-3}{\left(3x-5\right)^2}-\frac{12x-10}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\frac{2x-3+x-2}{\left(7-6x\right)^2}=\frac{6x-3-12x+10}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\frac{3x-5}{\left(7-6x\right)^2}=\frac{7-6x}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\left(7-6x\right)^3=\left(3x-5\right)^3\)
\(\Leftrightarrow7-6x=3x-5\)
\(\Leftrightarrow7+5=3x+6x\)
\(\Leftrightarrow12=9x\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)
\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
= \(\frac{3x\left(x-y\right)}{5.2.\left(x+y\right)\left(x-y\right)}-\frac{x\left(x+y\right)}{10\left(x^2-y^2\right)}\)
= \(\frac{3x^2-3xy-x^2-xy}{10\left(x^2-y^2\right)}\)
= \(\frac{3x\left(x-y\right)}{10\left(x^2-y^2\right)}\)
= \(\frac{3x}{10\left(x+y\right)}\)
\(b,\frac{x-3}{x-2}=\frac{5}{\left(x-2\right)\left(x+3\right)}\)ĐKXĐ : \(x\ne2;\ne-3\)
\(\Leftrightarrow\frac{x^2-9}{\left(x-2\right)\left(x+3\right)}=\frac{5}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow x^2-9=5\)
\(\Leftrightarrow x^2=14\)
\(x=\sqrt{14}\)
.....
a) \(\left(x+3\right)^2-\left(x-3\right)^2=6x\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2-6x+9\right)=6x\)
\(\Leftrightarrow x^2+6x+9-x^2+6x-9=6x\Leftrightarrow12x=6x\)\(\Leftrightarrow12x-6x=0\Leftrightarrow6x=0\Leftrightarrow x=0\)
Vậy phương trình có tập nghiệm S = { 0 }
b)\(-ĐKXĐ:\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x+3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-3\end{cases}}\)
- Ta có : \(\frac{x-3}{x-2}=\frac{5}{\left(x-2\right)\left(x+3\right)}\Leftrightarrow\frac{x-3}{x-2}-\frac{5}{\left(x-2\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-5}{\left(x-2\right)\left(x+3\right)}=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\left(thoaman\right)\\x=-3\left(kothoaman\right)\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 3 }
\(\frac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\frac{1}{2}\right)+\frac{1}{2}\left(x+4\right)\)
\(=\frac{1}{2}x^2.6x+\frac{1}{2}x^2.\left(-3\right)+\left(-x\right).x^2+\left(-x\right).\frac{1}{2}+\frac{1}{2}.x+\frac{1}{2}.4\)
\(=3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2\)
\(=\left(3x^3-x^3\right)-\frac{3}{2}x^2+\left(-\frac{1}{2}x+\frac{1}{2}x\right)+2\)
\(=2x^3-\frac{3}{2}x^2+2\)
\(a,\)\(\frac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\frac{1}{2}\right)+\frac{1}{2}\left(x+4\right)\)
\(=3x^3-\frac{3}{2}x^2-x^3-\frac{1}{2}x+\frac{1}{2}x+2\)
\(=2x^3-\frac{3}{2}x^2+2\)
\(b,\)\(2x\left(3x^3-x\right)-4x^2\left(x-x^2+1\right)+\left(x-3x^2\right)x\)
\(=6x^4-2x^2-4x^3+4x^4-4x^2+x^2-3x^3\)
\(=10x^4-7x^3-5x^2\)
a) \(\left(3x-5\right)\left(2x-1\right)-\left(x+2\right)\left(6x-1\right)=0\)
⇔ \(6x^2-13x+5-6x^2-11x+2=0\)
⇔ \(24x=7\)⇔\(x=\frac{7}{24}\)
b) \(\left(3x-2\right)\left(3x+2\right)-\left(3x-1\right)^2=-5\)
⇔ \(9x^2-4-9x^2+6x-1=5\)
⇔ \(6x=10\)⇔ \(x=\frac{5}{3}\)
c) \(x^2=-6x-8\)⇔\(x^2+6x+8=0\)⇔\(\left(x+2\right)\left(x+4\right)=0\)
⇔\(\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
a, (3x - 5)(2x - 1) - (x + 2)(6x - 1) = 0
=> 6x^2 - 3x - 10x + 5 - (6x^2 - x + 12x - 2) = 0
=> 6x^2 - 13x + 5 - 6x^2 - 11x + 2 = 0
=> -24x + 7 = 0
=> - 24x = -7
=> x = 7/24
b, (3x - 2)(3x + 2) - (3x - 1)^2 = -5
=> 9x^2 - 4 - 9x^2 + 6x - 1 = -5
=> 6x - 5 = -5
=> 6x = 0
=> x = 0
c, x^2 = -6x - 8
=> x^2 + 6x + 8 = 0
=> x^2 + 2.x.3 + 9 - 1 = 0
=> (x + 3)^2 = 1
=> x + 3 = 1 hoặc x + 3 = -1
=> x = -2 hoặc x = -4
đk: \(x\ne-2\)
\(PT\Leftrightarrow\frac{x^2}{\left(x+2\right)^2}=3x^2-6x-3\)
\(\Leftrightarrow x^2=\left(x^2+4x+4\right)\left(3x^2-6x-3\right)\)
\(\Leftrightarrow3x^4+6x^3-16x^2-36x-12=0\)
\(\Leftrightarrow\left(3x^4-18x^2\right)+\left(6x^3-36x\right)+\left(2x^2-12\right)=0\)
\(\Leftrightarrow3x^2\left(x^2-6\right)+6x\left(x^2-6\right)+2\left(x^2-6\right)=0\)
\(\Leftrightarrow\left(x^2-6\right)\left(3x^2+6x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-6=0\\3x^2+6x+2=0\end{cases}}\Rightarrow x\in\left\{\pm\sqrt{6};\frac{-3\pm\sqrt{3}}{2}\right\}\)
bài yêu cầu gì vậy b?