x^4+3x^2+3>0
chung minh luon duong moi nguoi giup mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2-4x-5=t\Rightarrow x^2-4x-19=t-14\)
Ta có: \(\left(x^2-4x-5\right)\left(x^2-4x-19\right)+50\)
\(=t\left(t-14\right)+50\)
\(=t^2-14t+50\)
\(=t^2-14t+49+1=\left(t-7\right)^2+1>0\forall t\)
Vậy biểu thức trên luôn dương với mọi giá trị của biến.
Chúc bạn học tốt.
a.\(6x^2-\left(2x-3\right)\left(3x+2\right)-1=0\Leftrightarrow6x^2-\left(6x^2-2x-6\right)-1=0\)
\(\Leftrightarrow2x+5=0\Leftrightarrow x=-\frac{5}{2}\)
b. \(\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)=0\Leftrightarrow x^2+4x-21-\left(x^2+4x-5\right)=0\)
\(\Leftrightarrow-16=0\)
Vậy không có x thỏa mãn.
x - 2 = - 7 - 13
x - 2 = - 20
x = ( - 20 ) + 2
x = - 18
Vậy x = - 18
Ta có: \(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left[x\left(x+y+z\right)\right]\left[\left(x+y\right)\left(x+z\right)\right]+y^2z^2\)
\(=4\left(x^2+xy+zx\right)\left(x^2+xy+yz+zx\right)+y^2z^2\) \(\left(1\right)\)
Đặt \(\hept{\begin{cases}x^2+xy+zx=a\\yz=b\end{cases}}\)
Khi đó: \(\left(1\right)=4a\left(a+b\right)+b^2\)
\(=4a^2+4ab+b^2\)
\(=\left(2a+b\right)^2\)
\(=\left(2x^2+2xy+2zx+yz\right)^2\ge0\left(\forall x,y,z\right)\)
=> đpcm
Ta có:\(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+yz+zx\right)+y^2z^2\)Đặt \(x^2+xy+xz=t\)thì biểu thức trên trở thành \(4t\left(t+yz\right)+y^2z^2=4t^2+4yzt+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\forall x,y,z\left(đpcm\right)\)
Muốn sửa xong đoạn đường đó trong 6 ngày, cần số người là:
16 : (6 : 3) = 32 (người)
Đáp số: 32 người.
Chúc bạn học tốt.
😁😁😁
Mọi số lớn hơn 0 đều mang giá trị dương
Mọi số lớn hơn 0 đều có giá trị là dương .
Cho mk xin cái li ke