K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

Đặt A= n(n+1)(2n+1)

*) CM A chia hết cho 2

+n chẵn --> n chia hết cho 2--> A chia hết cho 2

+n lẻ -->n+1 chẵn --> n+ 1chia hết cho 2--> A chia hết cho2

Vậy A chia hết cho 2(1)

*)CM A chia hết cho 3

+)n chia hết cho 3--> A chia hết cho 3

+)n chia 3 dư 1--> 2n chia 3 dư 2--> 2n+1 chia hết cho 3 --> A chia hết cho 3

+)n chia 3 dư 2--> n+1 chia hết cho 3 --> A chia hết cho 3

Vậy A chia hết cho 3(2)

Từ (1) và (2) --> A chia hết cho 6

Vậy n(n+1)(2n+1) chia hết cho 6

1 tháng 11 2015

Ta có : n(n+1)(2n+1)

= n(n+1)(n+2+n-1)

= n(n+1)(n+2)+(n-1)(n+1)n 
Ta thấy n(n+1)(n+2) và (n-1)(n+1)n là ba số tự nhiên liên tiếp nên chia hết cho 2 và chia hết cho 3.

Do đó n(n+1)(n+2)+(n-1)(n+1)n chia hết cho 2 và chia hết cho 3

Mà ƯCLN(2; 3) = 1 nên tổng trên chia hết cho tích (2.3) = 6

Suy ra đpcm   

22 tháng 6 2016

1)  \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

22 tháng 6 2016

2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3

=> A\(⋮\)2.3

A\(⋮\)6

15 tháng 10 2019

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

15 tháng 10 2019

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

19 tháng 9 2018

a,n(2n-3)-2n(n+1)

=2n2-3n-2n2-2n

=-5n⋮5

b: \(A=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)

Vì a;a+1;a+2 là ba số liên tiếp

nên \(A⋮3!\)

hay A chia hết cho 6

6 tháng 8 2017

a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)

\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z

b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)

\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z

5 tháng 9 2015

Nếu n = 2k => n chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2

Nếu n = 2k+1 => (n+1) chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2

=> n(n+1)(2n+1) luôn chia hết cho 2

Nếu n = 3k => n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

Nếu n = 3k+1 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

Nếu n = 3k+2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

=> n(n+1)(2n+1) luôn chia hết cho 3

Mà 2 và 3 là 2 số nguyên tố cùng nhau => n(n+1)(2n+1) chia hết cho 2.3 => n(n+1)(2n+1) chia hết cho 6