cm A= 1/2^2 +1/3^2+1/4^2+...+1/45^2 <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\)
\(\Rightarrow4A=2^2\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{100}}\right)=1+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}\)
\(\Rightarrow3A=4A-A=1+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^2}-\dfrac{1}{2^4}-...-\dfrac{1}{2^{100}}=1-\dfrac{1}{2^{100}}\)
\(\Rightarrow A=\left(1-\dfrac{1}{2^{100}}\right):3=\dfrac{1}{3}-\dfrac{1}{2^{100}.3}< \dfrac{1}{3}\left(đpcm\right)\)
Bài 1:
\(A=\frac{1}{\left(1+2\right)}+\frac{1}{\left(1+2+3\right)}+\frac{1}{\left(1+2+3+4\right)}\)\(+\frac{1}{\left(1+2+3+4+5\right)}+...+\)\(\frac{1}{\left(1+2+3+...+10\right)}\)
\(A=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{55}\)
\(A=2\left(\frac{1}{6}+\frac{1}{12}+....+\frac{1}{110}\right)\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(A=\frac{9}{11}\)
Bài 2 :
2) Tử số = 11 x 13 x 15 + 3 x 3 x 3 x 11 x 13 x 15 + 5 x 5 x 5 x 11 x 13 x 15 + 9 x 9 x 9 x 11 x 13 x 15
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) x 11 x 13 x 15 = (1+27+125+ 729) x 11 x 13 x 15
Mẫu số = 11 x 13 x 17 + 3 x 3 x 3 x 13 x 15 x 19 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17 lớn hơn 11 x 13 x 15 + 3 x 3 x 3 x 13 x 15 x 17 + 5 x 5 x 5 x 13 x 15 x 17 + 9 x 9 x 9 x 13 x 15 x 17
= (1 + 3 x 3 x 3 + 5 x 5 x 5 + 9 x 9 x9) 13 x 15 x 17 = (1+27+125+729) x 13 x 15 x 17
\(\Rightarrow A< \frac{\left(1+27+125+729\right)\times11\times13\times15}{\left(1+27+125+729\right)\times13\times15\times17}\)
\(=\frac{11}{17}\)
\(=\frac{1111}{1717}=B\)
Vậy \(A=B\)
Bài 1:a, \(\dfrac{13}{2}\) = \(\dfrac{13\times5}{2\times5}\) = \(\dfrac{65}{10}\)
b, \(\dfrac{11}{40}\) = \(\dfrac{11\times25}{40\times25}\) = \(\dfrac{275}{1000}\)
c, \(\dfrac{21}{250}\) = \(\dfrac{21\times4}{250\times4}\) = \(\dfrac{84}{1000}\)
d, \(\dfrac{27}{45}\) = \(\dfrac{27:9}{45:9}\) = \(\dfrac{3}{5}\) = \(\dfrac{3\times2}{5\times2}\) = \(\dfrac{6}{10}\)
Bài 2:
a, (3\(\dfrac{1}{8}\) + 1\(\dfrac{3}{4}\)): 2\(\dfrac{1}{4}\)
= (\(\dfrac{25}{8}\) + \(\dfrac{7}{4}\)): \(\dfrac{9}{4}\)
= \(\dfrac{39}{8}\) \(\times\) \(\dfrac{4}{9}\)
= \(\dfrac{13}{6}\)
A=1/1^2+ 1/2^2+ 1/3^2+...+ 1/99^2+ 1/100^2
A=1+ 1/2^2+ 1/3^2+...+ 1/99^2+ 1/100^2
A<1+(1/2^2+1/2.3+1/3/4+...+1/98.99+1/99.100) (giữ nguyên phân số 1/2^2)
A<1+ (1/4+1/2-1/3+1/3-1/4+...+1/99-1/99+1/99-1/100)
A<1+ (1/4+1/2-1/100)
Mà 1/4+1/2-1/100 <1/4+1/2=3/4
=>A<1+3/4=7/4
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...
\(\frac{1}{45^2}< \frac{1}{44.45}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{44.45}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}\)
\(A< 1-\frac{1}{45}< 1\)
\(\Rightarrow A< 1\) (đpcm)
thank