Cho tam giác ABC. Tìm vị trí của M trên BC để Samb=3/4.Sabc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
dễ thấy Sabc =\(\frac{1}{2}\) AB.AC.sinA; Sade= \(\frac{1}{2}\)AD.AE.sinA
=> Sabc/Sade=ad.ae/ab.ac
de//bc thì \(\frac{AD}{AB}=\frac{DE}{BC}=>\frac{BD}{AB}=\frac{BC-DE}{BC}=>BD=\frac{AB\left(BC-DE\right)}{BC}\)
SBDE = \(\frac{1}{2}BD.DEsin\widehat{BDE}=\frac{1}{2}\frac{AB\left(BC-DE\right)}{BC}.DE.cos\widehat{ABC}=\)\(\frac{AB.cos\widehat{ABC}}{2BC}\left(BC.DE-DE^2\right)\)
BC.DE - DE2 = \(\frac{BC^2}{4}-\)(\(\frac{BC}{2}-DE\))2 \(\le\frac{BC^2}{4}\)
vậy SBDE đạt GTLN khi DE= \(\frac{BC}{2}\)hay \(\frac{DE}{BC}=\frac{1}{2}=\frac{AD}{AB}\) hay D là trung điểm AB
Kẻ đường cao BH, MK.
Ta có: SAMB + SBMC + SMAC = SABC (1)
Mà SAMB + SBMC = SMAC (2)
Do đó, M nằm trong ΔABC, nằm trên đường thẳng d bờ AC chứa B sao cho khoảng cách từ M đến AC = 1/2 đường cao BH.
Suy ra điểm M nằm trong ΔABC nằm trên đường trung bình của ΔABC.
SAMB+SBMC=SMAC đặt là S1+S2=S3 và SABC=S
Ta có S1+S2+S3=S=> S1+S2=S-S3 = S3
=> S3/S=1/2
S và S3 có chung cạnh đáy AC => chiều cao ứng với AC cua S3 = 1/2 chiều cao ứng với AC của S
Vậy ta dựng đg cao BH ( H thuộc AC), lấy trung điểm M của BH, qua M vẽ đg thẳng d//BC cắt AB và AC tại O và P
=> điểm M nằm trên OP thì S1+S2=S3
a) Xét tứ giác AETD có
TE//AD(gt)
TD//AE(gt)
Do đó: AETD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Lời giải:
Lấy $K, H$ lần lượt đối xứng với $M$ qua $AB,AC$.
Theo tính chất đối xứng: $EK=EM; FM=FH$
Chu vi tam giác $MEF$:
$ME+EF+MF=EK+FH+EF\geq KH(*)$
Vì $M$ cố định và tam giác $ABC$ cố định nên $KH$ cố định
Vậy chu vi $MEF$ nhỏ nhất bằng $KH$. Điều này xảy ra khi $E,F$ là giao điểm của $KH$ với lần lượt $AB,AC$