K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

ĐặtA = \(2+2^2+2^3+...+2^{100}\)

\(\Rightarrow2A=2^2+2^3+2^4+...+2^{101}\)

\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)

\(\Rightarrow A=2^{101}-2=2^{2n-1}-2\)

\(\Rightarrow2^{2n-1}=2^{101}\Rightarrow2n-1=101\)

\(\Rightarrow n=51\)

8 tháng 7 2018

Đặt \(A=2+2^2+2^3+...+2^{100}\)

\(2A=2.\left(2+2^2+...+2^{100}\right)\)

\(2A=2^2+2^3+...+2^{101}\)

\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(A=2^{101}-2\)

Ta có : \(2^{2n-1}-2=2^{101}-2\)

\(\Rightarrow2^{2n-1}=2^{101}\)

\(\Rightarrow2n-1=101\)

\(\Rightarrow n=51\)

5 tháng 8 2023

\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)

Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B

\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)

Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C

\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)

\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)

HQ
Hà Quang Minh
Giáo viên
5 tháng 8 2023

\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

11 tháng 9 2021

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)

\(\Rightarrow A=2A-A=2^2+2^3+2^4+...+2^{100}+2^{101}-2-2^2-2^3-2^4-...-2^{99}-2^{100}=2^{101}-2\)

26 tháng 8 2021

\(A=1+2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+2^5+...+2^{100}+2^{101}\)

\(\Rightarrow2A-A=2^{101}-1\)

\(\Leftrightarrow A=2^{101}-1\)

26 tháng 8 2021

Đặt biểu thức là A

ta có 2A-A=2^101-1

2 tháng 10 2021

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

27 tháng 10 2024

1990.1990 -1992.1988

 

27 tháng 8 2017

20 tháng 2 2019

a, Ta có :

 A =  1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100

2A =  2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101

A = 2A – A =  ( 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 ) –( 1 + 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 )

=  2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 + 2 101 1 - 2 - 2 2 - 2 3 - 2 4 - . . . - 2 99 - 2 100

=  2 101 - 1

Vậy A =  2 101 - 1

b, Ta có.

B = 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99

5 2 B =  5 2 ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )

25B =  5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101

25B – B = ( 5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 ) –  ( 5 + 5 3 + 5 5 + . . . + 5 97 + 5 99 )

24B =  5 3 + 5 5 + . . . + 5 97 + 5 99 + 5 101 5 - 5 3 - 5 5 - . . . - 5 97 - 5 99

24B =  5 101 - 5

B =  5 101 - 5 24 = 5 5 100 - 1 24

Vậy B =  5 5 100 - 1 24

a: \(\left[600-\left(40:2^3+3\cdot5^3\right)\right]:5\)

\(=\left[600-5-375\right]:5\)

\(=44\)

b: \(16\cdot12^2-\left(4\cdot23^2-59\cdot4\right)\)

\(=16\cdot144-4\cdot\left(23^2-59\right)\)

\(=2304-4\cdot470\)

\(=424\)

 

c: Ta có: \(2^{100}-\left(1+2+2^2+2^3+...+2^{99}\right)\)

\(=2^{100}-2^{100}+1\)

=1

d: Ta có: \(169\cdot2011^0-17\cdot\left(83-1702:23+1^{2012}\right)+2^7:2^4\)

\(=169-17\cdot\left(83-74+1\right)+2^3\)

\(=177-17\cdot10\)

=7