giúp tui toán 8 :CM: a(b-c)-b(a+c)+c(a-b)=-2bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hằng đẳng thức thứ nhất sai rồi bạn , phải là
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
S=−(a−b−c)+(−c+b+a)−(a+b)
S=−a+b+c−c+b+a−a−b
S=(−a+a−a)+(b+b−b)+(c−c)
S=−a+b
\(\Leftrightarrow\dfrac{2bc}{2bc+a^2}+\dfrac{2ac}{2ac+b^2}+\dfrac{2ab}{2ab+c^2}\le2\)
\(\Leftrightarrow\dfrac{2bc}{2bc+a^2}-1+\dfrac{2ac}{2ac+b^2}-1+\dfrac{2ab}{2ab+c^2}-1\le2-3\)
\(\Leftrightarrow\dfrac{a^2}{2bc+a^2}+\dfrac{b^2}{2ac+b^2}+\dfrac{c^2}{2ab+c^2}\ge1\)
BĐT trên đúng theo C-S:
\(\dfrac{a^2}{2bc+a^2}+\dfrac{b^2}{2ac+b^2}+\dfrac{c^2}{2ab+c^2}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta có:
\(Q=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
\(Q=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2ab}+\frac{\left(b+c\right)\left(b^2-bc+c^2\right)}{2bc}+\frac{\left(c+a\right)\left(c^2-ca+a^2\right)}{2ca}\)
\(Q=\frac{\left(a+b\right)\left[\left(a^2+b^2\right)-ab\right]}{2ab}+\frac{\left(b+c\right)\left[\left(b^2+c^2\right)-bc\right]}{2bc}+\frac{\left(c+a\right)\left[\left(c^2+a^2\right)-ca\right]}{2ca}\)
\(\ge\frac{\left(a+b\right)\left(2ab-ab\right)}{2ab}+\frac{\left(b+c\right)\left(2bc-bc\right)}{bc}+\frac{\left(c+a\right)\left(2ca-ca\right)}{ca}\) \(\left(Cauchy\right)\)
\(=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c=3\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Bạn ghi đề thiếu kìa bạn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)nữa
\(\frac{a}{d}=\frac{a}{b}\times\frac{b}{c}\times\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
VT = a(b-c)-b(a+c)+c(a-b)=ab-ac-ab-bc+ac-bc=-2bc=VP(đpcm)
Nhân hết ra nhé bạn
Ta có \(a.\left(b-c\right)-b.\left(a+c\right)+c.\left(a-b\right)\)
\(=ab-ac-ab-bc+ac-bc\)
\(=\left(ab-ab\right)+\left(-ac+ac\right)+\left(-bc-bc\right)\)
\(=-2bc\)(đpcm)
Vậy \(a.\left(b-c\right)-b.\left(a+c\right)+c.\left(a-b\right)=-2bc\)