![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{A}{B}=\frac{4n^2-2n+3}{2n-1}=2n-2\)(dư 1)
Vì \(1\ne0\) nên không có giá trị n để A chia hết cho B
Vậy: \(n\in\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a: \(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\cdot\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\cdot\left(2n-1-1\right)\left(2n-1+1\right)\)
\(=2n\left(2n-2\right)\left(2n-1\right)\)
\(=4n\left(n-1\right)\left(2n-1\right)\)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>4n(n-1) chia hết cho 8
=>4n(n-1)(2n-1) chia hết cho 8
b: \(n^3-19n=n^3-n-18n\)
\(=n\left(n-1\right)\left(n+1\right)-18n\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
=>n(n-1)(n+1)-18n chia hết cho 6
![](https://rs.olm.vn/images/avt/0.png?1311)
CM theo chiều ngược lại , nếu a ; b ; c là 3 cạnh tam giác
thì tổng các phân thức trên > 1 ( 1 )
\(\frac{a^2+b^2-c^2}{2ab}+1=\frac{\left(a+b\right)^2-c^2}{2ab}\) ; \(\frac{b^2+c^2-a^2}{2bc}-1=\frac{\left(b-c\right)^2-a^2}{2bc}\) ;
\(\frac{c^2+a^2-b^2}{2ac}-1=\frac{\left(c-a\right)^2-b^2}{2ac}\)
\(\Rightarrow\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}-1=\frac{\left(a+b\right)^2-c^2}{2ab}+\frac{\left(b-c\right)^2-a^2}{2bc}+\frac{\left(c-a\right)^2-b^2}{2ac}\)
\(=\frac{\left(a+b-c\right)\left(a+b+c\right)}{2ab}+\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc}+\frac{\left(c-a-b\right)\left(c-a+b\right)}{2ac}\)
\(=\frac{\left(a+b-c\right)\left(a+b+c\right)}{2ab}+\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc}+\frac{\left(a+b-c\right)\left(a-c-b\right)}{2ac}\)
\(=\left(a+b-c\right)\left(\frac{a+b+c}{2ab}+\frac{b-c-a}{2bc}+\frac{a-c-b}{2ac}\right)\)
\(=\left(a+b-c\right)\left[\frac{\left(a+b+c\right)c+\left(b-c-a\right)a+\left(a-c-b\right)b}{2abc}\right]\)
\(=\left(a+b-c\right)\left[\frac{ac+bc+c^2+ab-ac-a^2+ab-bc-b^2}{2abc}\right]\)
\(=\left(a+b-c\right)\left[\frac{c^2-\left(a-b\right)^2}{2abc}\right]\)
\(=\left(a+b-c\right).\frac{\left(c-a+b\right)\left(c+a-b\right)}{2abc}\) ( * )
Vì a ; b ; c là 3 cạnh của tam giác nên biểu thức (*) luôn > 0
\(\Rightarrow\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}-1>0\)
\(\Rightarrow\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}>1\left(đpcm\right)\) ( 2 )
Từ ( 1 ) ; ( 2 ) => a ; b ; c là 3 cạnh của 1 tam giác
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng Bunhiacopxki dạng phân thức:
VT \(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\) = 1