Cho tam giác nhọn ABC có BD,CE là 2 đường cao. Biết \(S_{ADE}=\frac{3}{4}S_{ABC}\). Tính số đo của \(\widehat{A}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\)
Xét tam giác ADE và tam giác ABC có :
\(\frac{AD}{AB}=\frac{AE}{AC}\) \(\left(=\cos\widehat{A}\right)\)
\(\widehat{A}\) là góc chung
Do đó : \(\Delta ADE~\Delta ABC\left(c-g-c\right)\)
Mà tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng nên
\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\frac{AE}{AC}\right)^2=\cos^2\widehat{A}\)\(\Rightarrow\)\(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ( đpcm )
làm tạm 1 câu :v
\(S_{ADE}+S_{BCDE}=S_{ABC}.1=S_{ABC}\left(\sin^2\widehat{A}+\cos^2\widehat{A}\right)\)
\(\Rightarrow\)\(S_{ADE}+S_{BCDE}=S_{ABC}.\sin^2\widehat{A}+S_{ABC}.\cos^2\widehat{A}\)
\(\Leftrightarrow\)\(S_{BCDE}=S_{ABC}.\sin^2\widehat{A}\) ( do \(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) )
Bạn tử kẻ hình nhé .
a)\(\Delta ABD~\Delta ACE\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\)
\(\Rightarrow\Delta ADE~\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=cos^2\widehat{BAC}\)
\(\Rightarrow S_{ADE}=S_{ABC}.cos^2\widehat{BAC}\)
b)Ta có : \(S_{BCDE}=S_{ABC}-S_{ADE}=S_{ABC}-S_{ABC}.cos^2\widehat{BAC}=S_{ABC}\left(1-cos^2\widehat{BAC}\right)=S_{ABC}.sin^2\widehat{BAC}\)
a, ABD đồng dạng ACE (g.g) (có chung góc A và cùng có 1 góc vuông)
b, từ câu a => AD/AB = AE/AC
2 tam giác có chung góc A => đồng dạng (c.g.c)
Tham khảo:
a) Áp dụng công thức \(S = \frac{1}{2}ac.\sin B\) cho tam giác ABC và BED, ta có:
\({S_{ABC}} = \frac{1}{2}.BA.BC.\sin B;{S_{BED}} = \frac{1}{2}..BE.BD.\sin B\)
\( \Rightarrow \frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}.BE.BD.\sin B}}{{\frac{1}{2}.BA.BC.\sin B}} = \frac{{BE.BD}}{{BA.BC}}\)
b) Ta có: \(\cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}}\)
Mà \(\frac{{{S_{BED}}}}{{{S_{ABC}}}} = \frac{1}{9} \Rightarrow \frac{{BD}}{{BA}}.\frac{{BE}}{{BC}} = \frac{1}{9}\)
\( \Rightarrow \cos B = \frac{{BD}}{{BA}} = \frac{{BE}}{{BC}} = \frac{1}{3}\)
+) Xét tam giác ABC và tam giác DEB ta có:
\(\frac{{BE}}{{BC}} = \frac{{BD}}{{BA}} = \frac{1}{3}\) và góc B chung
\( \Rightarrow \Delta ABC \sim \Delta DEB\) (cgc)
\( \Rightarrow \frac{{DE}}{{AC}} = \frac{1}{3} \Rightarrow AC = 3.DE = 3.2\sqrt 2 = 6\sqrt 2 .\)
Ta có: \(\cos B = \frac{1}{3} \Rightarrow \sin B = \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}} = \frac{{2\sqrt 2 }}{3}\) (do B là góc nhọn)
Áp dụng định lí sin trong tam giác ABC ta có:
\(\frac{{AC}}{{\sin B}} = 2R \Rightarrow R = \frac{{6\sqrt 2 }}{{\frac{{2\sqrt 2 }}{3}}}:2 = \frac{9}{2}\)
Ta có: SAED = 1/14SABC => ED = 1/14BC
SAFD = 7/50SABC => FD = 7/50BC
=> EC = ED + DC = 1/14BC + 1/2BC = 4/7BC và EB = BC - EC = 3/7BC
=> EB/EC = 3/4 => AB/AC = 3/4 (= EB/EC, theo tính chất đường phân giác trong tam giác)
Hơn nữa SABF = SABD - SAFD = 1/2SABC - 7/50SABC = 9/25SABC
SACF = SACD + SAFD = 1/2SABC + 7/50SABC = 16/25SABC
=> SABF/SACF = 9/16 => FM/FN = 3/4 (với M, N là các chân đường cao hạ từ F xuống AB và AC)
Gọi I, J lần lượt là trung điểm các cạnh AB, AC
Các tam giác ∆ABF và ∆AFC vuông tại F => FI = 1/2AB, FJ = 1/2AC => FI/FJ = AB/AC = 3/4
Từ đó FM/FN = FI/FJ => ∆MIF ~ ∆NJF (ch - cgv) => ^MIF = ^NJF
Mà ∆IBF cân tại I, ∆AJF cân tại J
=> ^IFB = ^FAJ (1)
∆IAF cân tại I => ^IFA = ^IAF (2)
Từ (1) và (2) suy ra ^IAF + ^FAJ = ^IFA + ^IFB = 900 => ^BAC = 900.
a, \(\bigtriangleup{ABD} \sim \bigtriangleup{ACE}\) (g.g)
\(\Rightarrow\) \(\dfrac{AB}{AC} = \dfrac{AD}{AE}\) \(\Rightarrow\) \(\dfrac{AB}{AD} = \dfrac{AC}{AE}\)
\(\Rightarrow\) \(S_{ABC} \sim S_{ADE}\) (c.g.c)
\(\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}} = k^2 = ({\dfrac{AD}{AB}})^2\) = \(cos^2A\)
\(\Rightarrow\) \(S_{ADE} = S_{ABC} . cos^2A\) (đpcm)
b, \(S_{BCDE} = S_{ABC} - S_{ADE}\)
\(= S_{ABC} - S_{ABC} . cos^2A \)
= \(S_{ABC} (1-cos^2A)\)
= \(S_{BCDE} = S_{ABC} . sin^2A \) (đpcm)
Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDClà tứ giác nội tiếp
=>góc AED=góc ACB
=>ΔAED đồng dạng với ΔACB
Suy ra: \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=cos^2A\)
hay \(S_{ADE}=S_{ABC}\cdot cos^2A\)
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc BAD chung
DO đó ΔADB đồng dạng với ΔAEC
Suy ra: AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=cos^2A\)
hay \(S_{ADE}=S_{ABC}\cdot cos^2A\)