Bài 1. Phân tích đa thức thành nhân tử bằng phương pháp dúng hằng đẳng thức
a)\(x^4+2x^2y+y^2\)
b)\(\left(2a+b\right)^2-\left(2b+a\right)^2\)
c)\(\left(a^3-b^3\right)+\left(a-b\right)^2\)
d)\(\left(x^2+1\right)^2-4x^2\)
e)\(\left(y^3+8\right)+\left(y^2-4\right)\)
f)\(1-\left(x^2-2xy+y^2\right)\)
g)\(x^4-1\)
h)\(81y^2\left(y^2+6y\right)^2\)
m)\(\left(x-a\right)^4-\left(x+a\right)^4\)
Cảm ơn các bạn nha !! Mk học mà ko hiểu gì hết á<>
BÀI 1:
a) \(x^4+2x^2y+y^2=\left(x^2+y\right)^2\)
b) \(\left(2a+b\right)^2-\left(2b+a\right)^2=\left(2a+b+2b+a\right)\left(2a+b-2b-a\right)\)
\(=\left(3a+3b\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)\)
c) \(\left(a^3-b^3\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left[a^2+ab+b^2+\left(a-b\right)\right]=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
d) \(\left(x^2+1\right)^2-4x^2=\left(x^2+1-2x\right)\left(x^2+1+2x\right)=\left(x-1\right)^2\left(x+1\right)^2\)
e) \(\left(y^3+8\right)+\left(y^2-4\right)=\left(y+2\right)\left(y^2-y+2\right)\)
f) \(1-\left(x^2-2xy+y^2\right)=1-\left(x-y\right)^2=\left(1-x+y\right)\left(1+x-y\right)\)
g) \(x^4-1=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
h) ktra lại đề
m) \(\left(x-a\right)^4-\left(x+a\right)^4=-8ax\left(a^2+x^2\right)\)
a ) x^4 + 2x^2y + y^2
Dùng hằng đẳng thức ( a + b )^2 = a^2 +2ab + b^2
= ( x^2 + y )^2
b ) ( 2a + b )^2 - ( 2b + a )^2
= ( 4a^2 + 4ab + b^2 ) - ( 4b^2 + 4ab + a^2 )
= 4a^2 + 4ab + b^2 - 4b^2 - 4ab - a^2
= 3a^2- 3b^2
= 3( a^2 - b^2 )