cho a,b,c>0
\(\frac{1}{10a+b+c}+\frac{1}{a+10b+c}+\frac{1}{a+b+10c}\le\frac{1}{12}\)\(\frac{1}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi cái vế trái của BĐT cần c/m là P
Áp dụng BĐT Cô-si dạng \(\frac{1}{a+b+c+x+y+z}\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = x = y = z
và \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = x = y = z
Ta có \(\frac{1}{10a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(a+a\right)+\left(a+a\right)+\left(a+a\right)+\left(a+a\right)}\)
\(\le\frac{1}{36}\left(\frac{1}{a+b}+\frac{1}{a+c}+4.\frac{1}{a+a}\right)\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{2}{a}\right]\)
\(=\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{2}{a}\right]\) (1)
Tương tự \(\frac{1}{10b+c+a}\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{b}+\frac{1}{c}+\frac{1}{a}\right)+\frac{2}{b}\right]\) (2)
và \(\frac{1}{10c+a+b}\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{c}+\frac{1}{a}+\frac{1}{b}\right)+\frac{2}{c}\right]\) (3)
Cộng (1), (2), (3) vế theo vế ta được
\(P\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)+\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\right]=...=\frac{1}{12}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Kết hợp \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}\) (theo đề bài) và BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
Ta có \(P^2\le\frac{1}{144}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{144}\left[\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\right]\)
\(\le\frac{1}{144}\left(\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}+\frac{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\right)\)
Suy ra \(P^2\le\frac{1}{144}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{1}{144}\left(\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}+\frac{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\right)\)
Đặt \(t=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) thì \(\frac{1}{144}t^2\le\frac{1}{144}\left(\frac{1+t}{6}+\frac{2t^2}{3}\right)\)
\(\Leftrightarrow\) \(2t^2-t-1\le0\) \(\Leftrightarrow\) \(\frac{-1}{2}\le t\le1\)
Do đó \(P^2\le\frac{1}{144}t^2\le\frac{1}{144}.1^2=\frac{1}{144}\) \(\Rightarrow\) \(P\le\frac{1}{12}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(a=b=c=3\)
Câu hỏi của Ngoc An Pham - Toán lớp 9 | Học trực tuyến
bạn giải thích cặn kẽ hơn giúp mình cách làm đấy đc ko ? ( Giải đc theo cách lớp 8 thì càng tốt nhé !! )
Do a ; b ; c > 0 ( GT )
Áp dụng BĐT phụ \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\) , ta có :
\(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)
Lại có : \(\frac{1}{4a+b+c}=\frac{1}{a+a+a+a+b+c}\le\frac{1}{36}\left(\frac{4}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(1\right)\)
( áp dụng BĐT phụ \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+\frac{1}{a4}+\frac{1}{a5}+\frac{1}{a6}\ge\frac{36}{a1+a2+a3+a4+a5+a6}\) )
CMTT , ta có : \(\frac{1}{4b+a+c}\le\frac{1}{36}\left(\frac{4}{b}+\frac{1}{a}+\frac{1}{c}\right);\frac{1}{4c+a+b}\le\frac{1}{36}\left(\frac{4}{c}+\frac{1}{a}+\frac{1}{b}\right)\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow\frac{1}{4a+b+c}+\frac{1}{4b+a+c}+\frac{1}{4c+a+b}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{6}.1=\frac{1}{6}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=3\)
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\left\{\begin{matrix}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\end{matrix}\right.\)
Cộng theo từng vế:
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) ( đpcm )
Với a , b , c > 0
Ta có: \(a^2-2ab+b^2\ge0\)
\(\Rightarrow\) \(a^2+2ab+b^2\ge4ab\)
\(\Rightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\) \(\frac{a+b}{4ab}\ge\frac{1}{a+b}\)
\(\Rightarrow\) \(\frac{1}{a+b}\le\frac{1}{4b}+\frac{1}{4a}\)
\(\Rightarrow\) \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(1)
Chứng minh tương tự ta cũng có được:
\(\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\) (2)
và \(\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\) (3)
Cộng (1), (2), (3) vế theo vế ta được:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)
\(\Rightarrow\) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( ĐPCM)
Lời giải:
Lớp 8 thì chắc bạn học BĐT Bunhiacopxky rồi.
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)(1+1+1)\geq \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Rightarrow 3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\geq 4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Đặt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=x\Rightarrow 3+x\geq 4x^2\)
\(\Leftrightarrow 4x^2-x-3\leq 0\)
\(\Leftrightarrow (4x+3)(x-1)\leq 0\Rightarrow x\leq 1\) hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq 1(*)\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)(a+a+a+a+b+c)\geq (1+1+1+1+1+1)^2\)
\(\Leftrightarrow \frac{4}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{36}{4a+b+c}\)
Hoàn toàn tương tự:
\(\frac{1}{a}+\frac{4}{b}+\frac{1}{c}\geq \frac{36}{a+4b+c}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\geq \frac{36}{a+b+4c}\)
Cộng theo vế các BĐT vừa thu được ở trên và rút gọn:
\(\Rightarrow \frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\leq \frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\leq \frac{1}{6}.1=\frac{1}{6}\) (theo $(*)$)
Vậy ta có đpcm
Dấu "=" xảy ra khi $a=b=c=3$
Bài này dùng bđt phụ dạng \(\frac{1}{n+n_1+n_2+...+n_m}\le\frac{1}{m^2}\left(\frac{1}{n}+\frac{1}{n_1}+\frac{1}{n_2}+...+\frac{1}{n_m}\right)\)với m = 12
nhưng bị thiếu mất giả thiết rồi:(