Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi cái vế trái của BĐT cần c/m là P
Áp dụng BĐT Cô-si dạng \(\frac{1}{a+b+c+x+y+z}\le\frac{1}{36}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = x = y = z
và \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = x = y = z
Ta có \(\frac{1}{10a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(a+a\right)+\left(a+a\right)+\left(a+a\right)+\left(a+a\right)}\)
\(\le\frac{1}{36}\left(\frac{1}{a+b}+\frac{1}{a+c}+4.\frac{1}{a+a}\right)\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{2}{a}\right]\)
\(=\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{2}{a}\right]\) (1)
Tương tự \(\frac{1}{10b+c+a}\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{b}+\frac{1}{c}+\frac{1}{a}\right)+\frac{2}{b}\right]\) (2)
và \(\frac{1}{10c+a+b}\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{2}{c}+\frac{1}{a}+\frac{1}{b}\right)+\frac{2}{c}\right]\) (3)
Cộng (1), (2), (3) vế theo vế ta được
\(P\le\frac{1}{36}\left[\frac{1}{4}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)+\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\right]=...=\frac{1}{12}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Kết hợp \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}\) (theo đề bài) và BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
Ta có \(P^2\le\frac{1}{144}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{144}\left[\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\right]\)
\(\le\frac{1}{144}\left(\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}+\frac{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\right)\)
Suy ra \(P^2\le\frac{1}{144}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{1}{144}\left(\frac{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{6}+\frac{2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\right)\)
Đặt \(t=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) thì \(\frac{1}{144}t^2\le\frac{1}{144}\left(\frac{1+t}{6}+\frac{2t^2}{3}\right)\)
\(\Leftrightarrow\) \(2t^2-t-1\le0\) \(\Leftrightarrow\) \(\frac{-1}{2}\le t\le1\)
Do đó \(P^2\le\frac{1}{144}t^2\le\frac{1}{144}.1^2=\frac{1}{144}\) \(\Rightarrow\) \(P\le\frac{1}{12}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(a=b=c=3\)
Câu hỏi của Ngoc An Pham - Toán lớp 9 | Học trực tuyến
bạn giải thích cặn kẽ hơn giúp mình cách làm đấy đc ko ? ( Giải đc theo cách lớp 8 thì càng tốt nhé !! )
\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)
\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)
\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)
\(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)
\(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)
\(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)
\(2.\) \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\ge\frac{b}{1+b}+\frac{c}{1+c}\)
\(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
\(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\) \(1\ge8abc\)
\(\Leftrightarrow\) \(abc\ge\frac{1}{8}\left(đpcm\right).\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Lời giải:
Lớp 8 thì chắc bạn học BĐT Bunhiacopxky rồi.
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)(1+1+1)\geq \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Rightarrow 3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\geq 4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Đặt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=x\Rightarrow 3+x\geq 4x^2\)
\(\Leftrightarrow 4x^2-x-3\leq 0\)
\(\Leftrightarrow (4x+3)(x-1)\leq 0\Rightarrow x\leq 1\) hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq 1(*)\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)(a+a+a+a+b+c)\geq (1+1+1+1+1+1)^2\)
\(\Leftrightarrow \frac{4}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{36}{4a+b+c}\)
Hoàn toàn tương tự:
\(\frac{1}{a}+\frac{4}{b}+\frac{1}{c}\geq \frac{36}{a+4b+c}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\geq \frac{36}{a+b+4c}\)
Cộng theo vế các BĐT vừa thu được ở trên và rút gọn:
\(\Rightarrow \frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\leq \frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\leq \frac{1}{6}.1=\frac{1}{6}\) (theo $(*)$)
Vậy ta có đpcm
Dấu "=" xảy ra khi $a=b=c=3$
b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong
A= \(\frac{1}{a^3}\)+ \(\frac{1}{b^3}\)+ \(\frac{1}{c^3}\)+ \(\frac{ab^2}{c^3}\)+ \(\frac{bc^2}{a^3}\)+ \(\frac{ca^2}{b^3}\)
Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)
3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)
Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)
=> cái tử >= 9abc= 9 vì abc=1
Còn lại tự làm
Từ giả thiết => \(\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{a}{a+1}=\frac{1}{a+1}\)
Áp dụng bđt Cauchy cho 3 số dương : \(\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3.\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\). Tương tự: \(\frac{1}{b+1}\ge3.\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\)
\(\frac{1}{c+1}\ge3.\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)
\(\frac{1}{d+1}\ge3.\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Nhân từ 4 bđt: \(1\ge81abcd\Rightarrow abcd\le\frac{1}{81}\)
2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)
Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)
Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))
Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1
3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)
Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Từ đó suy ra \(ab+bc+ca\le1\)
\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
mình ghi nhầm cái số 1 nhỏ nha
mn nếu giải thì bỏ cái số đó đi
+ ta có a,b,c thuộc [0,1]
=> b^2 <= b và c^3 <= c
=> a + b^2 + c^3 - ab - bc - ca <= a + b + c - (ab + bc + ca)
+ mặt # a , b , c thuộc [0,1]
=> (1 - a)(1 - b)(1 - c) >=0
<> 1- a - b - c + ab + bc + ca - abc >=0
<> a + b + c - (ab + bc + ca) <= 1 - abc
=> a + b + c - (ab + bc + ca) <=1 (abc >= 0)
Bài này dùng bđt phụ dạng \(\frac{1}{n+n_1+n_2+...+n_m}\le\frac{1}{m^2}\left(\frac{1}{n}+\frac{1}{n_1}+\frac{1}{n_2}+...+\frac{1}{n_m}\right)\)với m = 12
nhưng bị thiếu mất giả thiết rồi:(