K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Vì 2-căn 3>0 nên số này có căn bậc hai số học

b: Vì 4-căn 15>0 nên số này có căn bậc hai số học

c: Vì \(2\sqrt{3}-\sqrt{6}-1>0\)

nên số này có căn bậc hái số học

d: \(3\sqrt{2}-2\sqrt{5}+1>0\)

nên số này có căn bậc hai số học

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

Lời giải:

Một số không âm thì sẽ có căn bậc 2 số học nên chỉ cần chứng minh biểu thức không âm là được

1.

$2-\sqrt{3}=\sqrt{4}-\sqrt{3}>0$ nên biểu thức có CBHSH

2.

$4-\sqrt{15}=\sqrt{16}-\sqrt{15}>0$ nên biểu thức có CBHSH

3.

$(2\sqrt{3})^2=12$
$(\sqrt{6}+1)^2=7+2\sqrt{6}=7+\sqrt{24}< 7+\sqrt{25}=12$

$\Rightarrow (2\sqrt{3})^2>(\sqrt{6}+1)^2\Rightarrow 2\sqrt{3}>\sqrt{6}+1$

$\Rightarrow 2\sqrt{3}-\sqrt{6}-1>0$ nên có CBHSH

4.

$(2\sqrt{5})^2=20$

$(3\sqrt{2}+1)^2=19+6\sqrt{2}>19+1=20$

$\Rightarrow (2\sqrt{5})^2< (3\sqrt{2}+1)^2\Rightarrow 2\sqrt{5}< 3\sqrt{2}+1$

$\Rightarrow 3\sqrt{2}-2\sqrt{5}+1>0$ nên có CBHSH

5.
$\sqrt{26}>\sqrt{25}=5$

$\sqrt{37}>\sqrt{36}=6$

$\Rightarrow 11-\sqrt{26}-\sqrt{37}=(5-\sqrt{26})+(6-\sqrt{37})< 0$ nên không có CBHSH

6.

$\sqrt{26}>\sqrt{25}=5$

$\sqrt{17}>\sqrt{16}=4$

$\Rightarrow \sqrt{26}+\sqrt{17}+1>10=\sqrt{100}>\sqrt{99}$

$\Rightarrow \sqrt{26}+\sqrt{17}+1-\sqrt{99}>0$ nên có CBHSH

19 tháng 12 2021

1B

2A

GIẢI THÍCH CÂU 2:TÍNH MÁY TÍNH

19 tháng 12 2021

1.B

25 tháng 3 2017

Các số có căn bậc hai:

a = 0              c = 1              d = 16 + 9

e = 32 + 42              h = (2-11)2              i = (-5)2

l = √16              m = 34              n = 52 - 32

Căn bậc hai không âm của các số đó là:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Không phải là căn bậc hai số học là đứng độc lập 1 mình đâu bạn

AH
Akai Haruma
Giáo viên
15 tháng 7 2021

Những trường hợp em nêu đều là CBHSH

$2\sqrt{3}$ là căn bậc 2 số học của $12$

$\sqrt{3}.\sqrt{4}$ là căn bậc 2 số học của $12$

$\sqrt{\frac{3}{4}}$ là căn bậc 2 số học $\frac{3}{4}$

Em cứ nhớ $\sqrt{x}$ (với $x$ là số không âm) là CBHSH của $x$, dù nó biểu diễn kiểu gì đi chăng nữa.

Bạn chỉ cần hiểu là căn bậc hai số học của là một số x sao cho \(x^2=a\) và \(x\ge0\) thôi

13 tháng 7 2021

Thế bạn ơi

28 tháng 2 2022

bon gà

 

a: 12 là căn bậc hai số học của 144

b: -0,36 không là căn bậc hai số học của bất kỳ số thực nào

c: \(\dfrac{2\sqrt{2}}{7}\) là căn bậc hai số học của \(\dfrac{8}{49}\)